Context. Older models of Galactic chemical evolution (GCE) predict [K/Fe] ratios as much as 1 dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698 Å resonance line, and the discrepancy between GCE models and observations is in part caused by the assumption of local thermodynamic equilibrium (LTE) in spectroscopic analyses. Aims. We study the statistical equilibrium of K I , focusing on the non-LTE effects on the 7698 Å line. We aim to determine how non-LTE abundances of potassium can improve the analysis of its chemical evolution, and help to constrain the yields of GCE models. Methods. We construct a new model K I atom that employs the most up-to-date atomic data. In particular, we calculate and present inelastic e+K collisional excitation cross-sections from the convergent close-coupling (CCC) and the B -Spline R -matrix (BSR) methods, and H+K collisions from the two-electron model (LCAO). We constructed a fine, extended grid of non-LTE abundance corrections based on 1D MARCS models that span 4000 < T eff ∕K < 8000, 0.50 < log g < 5.00, − 5.00 < [Fe/H] < + 0.50, and applied the corrections to potassium abundances extracted from the literature.more »
Measuring Elemental Abundances of JWST Target Stars for Exoplanet Characterization. I. FGK Stars
Abstract With the launch of the JWST, we will obtain more precise data for exoplanets than ever before. However, these data can only inform and revolutionize our understanding of exoplanets when placed in the larger context of planet–star formation. Therefore, gaining a deeper understanding of their host stars is equally important and synergistic with the upcoming JWST data. We present detailed chemical abundance profiles of 17 FGK stars that will be observed in exoplanet-focused Cycle 1 JWST observer programs. The elements analyzed (C, N, O, Na, Mg, Si, S, K, and Fe) were specifically chosen as being informative to the composition and formation of planets. Using archival high-resolution spectra from a variety of sources, we perform an LTE equivalent width analysis to derive these abundances. We look to literature sources to correct the abundances for non-LTE effects, especially for O, S, and K, where the corrections are large (often >0.2 dex). With these abundances and the ratios thereof, we will begin to paint clearer pictures of the planetary systems analyzed by this work. With our analysis, we can gain insight into the composition and extent of migration of Hot Jupiters, as well as the possibility of carbon-rich terrestrial worlds.
- Award ID(s):
- 2143400
- Publication Date:
- NSF-PAR ID:
- 10399535
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 3
- Page Range or eLocation-ID:
- 87
- ISSN:
- 0004-6256
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2 ≈ 32 M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yrmore »
-
The Galactic center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), allow the measurement of metallicities in the inner region of our Galaxy. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool Asymptotic Giant branch (AGB) stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the red giant branch. We studied metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ∼ +0.3 dex and a metal-poor peak around {Fe/H] = −0.5more »
-
Abstract Little is known about the origin of the fastest stars in the Galaxy. Our understanding of the chemical evolution history of the Milky Way and surrounding dwarf galaxies allows us to use the chemical composition of a star to investigate its origin and to say whether it was formed in situ or was accreted. However, the fastest stars, the hypervelocity stars, are young and massive and their chemical composition has not yet been analyzed. Though it is difficult to analyze the chemical composition of a massive young star, we are well versed in the analysis of late-type stars. We have used high-resolution ARCES/3.5 m Apache Point Observatory, MIKE/Magellan spectra to study the chemical details of 15 late-type hypervelocity star candidates. With Gaia EDR3 astrometry and spectroscopically determined radial velocities we found total velocities with a range of 274–520 km s −1 and mean value of 381 km s −1 . Therefore, our sample stars are not fast enough to be classified as hypervelocity stars, and are what is known as extreme-velocity stars. Our sample has a wide iron abundance range of −2.5 ≤ [Fe/H] ≤ −0.9. Their chemistry indicates that at least 50% of them are accreted extragalactic stars,more »
-
Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluatedmore »