skip to main content

Title: The Milky Way tomography with Subaru Hyper Suprime-Cam. I. Halo substructures

We analyze the photometric data in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) over ∼1200 deg2 to uncover new halo substructures beyond the distance, D⊙ ∼ 30 kpc, from the Sun. For this purpose, we develop an isochrone filter for an old, metal-poor stellar system to extract the faint main-sequence stars at a range of distances. With this method, we detect not only the previously discovered substructures such as the Orphan Stream, but also a new overdensity toward Boötes at about D⊙ ∼ 60 kpc and a new stream-like feature toward Pisces at around D⊙ ∼ 60 kpc. It has been suggested that a small-scale overdensity exists in this direction of Pisces (the so-called Pisces Overdensity), but our results show that the overdensity is widely spread with a tidally elongated feature. Combining our results with the ongoing Hyper Suprime-Cam narrow-band survey and the near-future spectroscopic survey with Prime Focus Spectrograph (PFS) will allow us to place strong constraints on the origin of these halo substructures.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Medium: X Size: p. 205-218
["p. 205-218"]
Sponsoring Org:
National Science Foundation
More Like this

    We present the discovery of a giant tidal tail of stars associated with F8D1, the closest known example of an ultra-diffuse galaxy (UDG). F8D1 sits in a region of the sky heavily contaminated by Galactic cirrus and has been poorly studied since its discovery two decades ago. The tidal feature was revealed in a deep map of resolved red giant branch stars constructed using data from our Subaru Hyper Suprime-Cam survey of the M81 Group. It has an average surface brightness of μg ∼ 32 mag arcsec−2 and can be traced for over a degree on the sky (60 kpc at the distance of F8D1) with our current imagery. We revisit the main body properties of F8D1 using deep multiband imagery acquired with MegaCam on CFHT and measure effective radii of 1.7–1.9 kpc, central surface brightnesses of 24.7–25.7 mag, and a stellar mass of ∼7 × 107M⊙. Assuming a symmetric feature on the other side of the galaxy, we calculate that 30–36 per cent of F8D1’s present-day luminosity is contained in the tail. We argue that the most likely origin of F8D1’s disruption is a recent close passage to M81, which would have stripped its gas and quenched its star formation. As the only UDG that has so far been studied to such faint surface brightness depths, the unveiling of F8D1’s tidal disruption is important. It leaves open the possibility that many other UDGs could be the result of similar processes, with the most telling signatures of this lurking below current detection limits.

    more » « less
  2. Abstract

    The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo.

    more » « less
  3. ABSTRACT Using deep images from the Hyper Suprime-Cam (HSC) survey and taking advantage of its unprecedented weak lensing capabilities, we reveal a remarkably tight connection between the stellar mass distribution of massive central galaxies and their host dark matter halo mass. Massive galaxies with more extended stellar mass distributions tend to live in more massive dark matter haloes. We explain this connection with a phenomenological model that assumes, (1) a tight relation between the halo mass and the total stellar content in the halo, (2) that the fraction of in situ and ex situ mass at r <10 kpc depends on halo mass. This model provides an excellent description of the stellar mass functions (SMFs) of total stellar mass ($M_{\star }^{\mathrm{max}}$) and stellar mass within inner 10 kpc ($M_{\star }^{10}$) and also reproduces the HSC weak lensing signals of massive galaxies with different stellar mass distributions. The best-fitting model shows that halo mass varies significantly at fixed total stellar mass (as much as 0.4 dex) with a clear dependence on $M_{\star }^{10}$. Our two-parameter $M_{\star }^{\mathrm{max}}$–$M_{\star }^{10}$ description provides a more accurate picture of the galaxy–halo connection at the high-mass end than the simple stellar–halo mass relation (SHMR) and opens a new window to connect the assembly history of haloes with those of central galaxies. The model also predicts that the ex situ component dominates the mass profiles of galaxies at r < 10 kpc for log M⋆ ≥ 11.7. The code used for this paper is available online 
    more » « less
  4. Abstract

    M64, often called the “Evil Eye” galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a “flyby” interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell ofM= 1.80 ± 0.54 × 108Mand [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108Mfor the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite ofM⋆,prog≃ 5 × 108M. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk.

    more » « less
  5. Abstract

    It is not yet settled how the combination of secular processes and merging gives rise to the bulges and pseudobulges of galaxies. The nearby (D∼ 4.2 Mpc) disk galaxy M94 (NGC 4736) has the largest pseudobulge in the local universe, and offers a unique opportunity for investigating the role of merging in the formation of its pseudobulge. We present a first ever look at M94's stellar halo, which we expect to contain a fossil record of M94's past mergers. Using Subaru's Hyper Suprime-Cam, we resolve and identify red giant branch (RGB) stars in M94's halo, finding two distinct populations. After correcting for completeness through artificial star tests, we can measure the radial profile of each RGB population. The metal-rich RGB stars show an unbroken exponential profile to a radius of 30 kpc that is a clear continuation of M94's outer disk. M94's metal-poor stellar halo is detectable over a wider area and clearly separates from its metal-rich disk. By integrating the halo density profile, we infer a total accreted stellar mass of ∼2.8 × 108M, with a median metallicity of [M/H] = −1.4. This indicates that M94's most-massive past merger was with a galaxy similar to, or less massive than, the Small Magellanic Cloud. Few nearby galaxies have had such a low-mass dominant merger; therefore we suggest that M94's pseudobulge was not significantly impacted by merging.

    more » « less