Ever since the discovery of the charge density wave (CDW) transition in the kagome metal , the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature ( ), an additional electronic nematic instability well below has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel ( ). Verifying the existence of a nematic transition below is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient is temperature independent, except for a step jump at . The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient increases below , reaching a peak value of 90 at . Our results strongly indicate that the phase transition at is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the channel. Published by the American Physical Society2024
more »
« less
Multidifferential cross section measurements of νμ -argon quasielasticlike reactions with the MicroBooNE detector
- PAR ID:
- 10488752
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 108
- Issue:
- 5
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation