Permeation of water in a poorly wettable material results in a conversion of pressure/volume work into surface free energy representing a novel form of energy storage. The addition of salt increases the amount of stored energy and can reduce the hysteresis of the infiltration−expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process and underlying structures and interactions in compressed nanoconfined solutions. We consider aqueous NaCl in nanosized confinements at pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient addition−removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment. The addition of salt increases in the solid−liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration.
more »
« less
Reversible Surface Energy Storage in Molecular-Scale Porous Materials
Forcible wetting of hydrophobic pores represents a viable method for energy storage in the form of interfacial energy. The energy used to fill the pores can be recovered as pressure–volume work upon decompression. For efficient recovery, the expulsion pressure should not be significantly lower than the pressure required for infiltration. Hysteresis of the wetting/drying cycle associated with the kinetic barrier to liquid expulsion results in energy dissipation and reduced storage efficiency. In the present work, we use open ensemble (Grand Canonical) Monte Carlo simulations to study the improvement of energy recovery with decreasing diameters of planar pores. Near-complete reversibility is achieved at pore widths barely accommodating a monolayer of the liquid, thus minimizing the area of the liquid/gas interface during the cavitation process. At the same time, these conditions lead to a steep increase in the infiltration pressure required to overcome steric wall/water repulsion in a tight confinement and a considerable reduction in the translational entropy of confined molecules. In principle, similar effects can be expected when increasing the size of the liquid particles without altering the absorbent porosity. While the latter approach is easier to follow in laboratory work, we discuss the advantages of reducing the pore diameter, which reduces the cycling hysteresis while simultaneously improving the stored-energy density in the material.
more »
« less
- Award ID(s):
- 1800120
- PAR ID:
- 10488799
- Publisher / Repository:
- mdpi
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 29
- Issue:
- 3
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 664
- Subject(s) / Keyword(s):
- molecular porosity interfacial energy wetting/dewetting hysteresis open ensemble molecular simulations
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding the invasion of a liquid into porous structures is the foundation of the characterization of the porosity-related properties of materials and is also of fundamental importance in the design of porous solid–liquid enabled energy protection systems, yet whether solid pores deform has been unclear so far. Here, we present a competition mechanism between liquid infiltration and cell wall buckling deformation by investigating a liquid nanofoam (LN) system subjected to quasi-static compression. The critical buckling stress of the cell wall and the infiltration pressure of liquid invasion into nanopores are studied and correlated through numerical simulation and experimental validation to reveal the quantitative relationship between nanopore deformation and liquid invasion. The analysis shows that liquid infiltration occurs, independent of the axial buckling stress of the cell wall; in contrast, the nanopore collapses radially when the radial collapse pressure is lower than the pressure of liquid infiltration, preventing the liquid invasion. Comprehensive molecular dynamics (MD) simulations are performed and demonstrate the deformation behavior of nanopores and cell wall–liquid interactions in a broad range. Pressure-induced compression experiments on a silica-based LN system are carried out and validate these theoretical and MD results.more » « less
-
Effective separation of two immiscible liquids with filters requires a difference in the pressures to permeate between the two liquids, and setting the applied pressure between these two pressures. To help design such filters, we present an equation that enables the calculation of the pressure for a liquid phase to permeate through a smooth pore in the shape of a truncated cone as a function of (a) the contact angle of the liquid on the filters and (b) the angle of the pore wall. The equation was derived by considering the interfacial energy required to push a liquid meniscus from the top of the pore to the bottom, and then to exceed the maximum curvature required at the exit. This equation was tested experimentally by adding a hydrostatic head with water on the 3Dprinted filters of acrylate polymer while systematically varying the pore radii and contact angle with water. Experimental results showed an increased pressure to permeate with higher contact angles while the equation predicted the opposite. We hypothesized that the reason for the disagreement was the assumption of a smooth pore. For a liquid on a rough pore wall, the curvature of the meniscus is not solely determined from the microscopic contact angle and the pore wall angle, but the liquid would adopt a lower curvature meniscus. Therefore, the developed equation was modified after reflecting the lower curvature, which showed much better agreement with the experimental results. The remaining discrepancy from the theory was attributed to the pressure fluctuation from the fluid flow occurring while adding water.more » « less
-
We derived equations and closed-form solutions of transit time for a viscous droplet squeezing through a small circular pore with a finite length at microscale under constant pressures. Our analyses were motivated by the vital processes of biological cells squeezing through small pores in blood vessels and sinusoids and droplets squeezing through pores in microfluidics. First, we derived ordinary differential equations (ODEs) of a droplet squeezing through a circular pore by combining Sampson flow, Poiseuille flow, and Young–Laplace equations and took into account the lubrication layer between the droplet and the pore wall. Second, for droplets wetting the wall with small surface tension, we derived the closed-form solutions of transit time. For droplets with finite surface tension, we solved the original ODEs numerically to predict the transit time. After validations against experiments and finite element simulations, we studied the effects of pressure, viscosity, pore/droplet dimensions, and surface tension on the transit time. We found that the transit time is inversely linearly proportional to pressure when the surface tension is low compared to the critical surface tension for preventing the droplet to pass and becomes nonlinear when it approaches the critical tension. Remarkably, we showed that when a fixed percentage of surface tension to critical tension is applied, the transit time is always inversely linearly proportional to pressure, and the dependence of transit time on surface tension is nonmonotonic. Our results provided a quick way of quantitative calculations of transit time for designing droplet microfluidics and understanding cells passing through constrictions.more » « less
-
Polymer infiltrated nanoporous gold is prepared by infiltrating polymer melts into a bicontinuous, nanoporous gold (NPG) scaffold. Polystyrene (PS) films with molecular weights (Mw) from 424 to 1133 kDa are infiltrated into a NPG scaffold (∼120 nm), with a pore radius (Rp) and pore volume fraction of 37.5 nm and 50%, respectively. The confinement ratios (Γ=RgRp) range from 0.47 to 0.77, suggesting that the polymers inside the pores are moderately confined. The time for PS to achieve 80% infiltration (τ80%) is determined using in situ spectroscopic ellipsometry at 150 °C. The kinetics of infiltration scales weaker with Mw, τ80%∝Mw1.30±0.20, than expected from bulk viscosity Mw3.4. Furthermore, the effective viscosity of the PS melt inside NPG, inferred from the Lucas–Washburn model, is reduced by more than one order of magnitude compared to the bulk. Molecular dynamics simulation results are in good agreement with experiments predicting scaling as Mw1.4. The reduced dependence of Mw and the enhanced kinetics of infiltration are attributed to a reduction in chain entanglement density during infiltration and a reduction in polymer–wall friction with increasing polymer molecular weight. Compared to the traditional approach involving adding discrete particles into the polymer matrix, these studies show that nanocomposites with higher loading can be readily prepared, and that kinetics of infiltration are faster due to polymer confinement inside pores. These films have potential as actuators when filled with stimuli-responsive polymers as well as polymer electrolyte and fuel cell membranes.more » « less