skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compressing liquid nanofoam systems: liquid infiltration or nanopore deformation?
Understanding the invasion of a liquid into porous structures is the foundation of the characterization of the porosity-related properties of materials and is also of fundamental importance in the design of porous solid–liquid enabled energy protection systems, yet whether solid pores deform has been unclear so far. Here, we present a competition mechanism between liquid infiltration and cell wall buckling deformation by investigating a liquid nanofoam (LN) system subjected to quasi-static compression. The critical buckling stress of the cell wall and the infiltration pressure of liquid invasion into nanopores are studied and correlated through numerical simulation and experimental validation to reveal the quantitative relationship between nanopore deformation and liquid invasion. The analysis shows that liquid infiltration occurs, independent of the axial buckling stress of the cell wall; in contrast, the nanopore collapses radially when the radial collapse pressure is lower than the pressure of liquid infiltration, preventing the liquid invasion. Comprehensive molecular dynamics (MD) simulations are performed and demonstrate the deformation behavior of nanopores and cell wall–liquid interactions in a broad range. Pressure-induced compression experiments on a silica-based LN system are carried out and validate these theoretical and MD results.  more » « less
Award ID(s):
1803695 1805451
PAR ID:
10107451
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
10
Issue:
39
ISSN:
2040-3364
Page Range / eLocation ID:
18444 to 18450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The suspension of nanoporous particles in a nonwetting liquid provides a unique solution to the crux of superfluid, sensing, and energy conversion, yet is challenged by the incomplete outflow of intruded liquid out of nanopores for the system reusability. We report that a continuous and spontaneous liquid outflow from hydrophobic nanopores with high and stable efficiency can be achieved by regulating the confinement of solid–liquid interactions with functionalized nanopores or/and liquids. Full-scale molecular-dynamics simulations reveal that the grafted silyl chains on nanopore wall surfaces will promote the hydrophobic confinement of liquid molecules and facilitate the molecular outflow; by contrast, the introduction of ions in the liquid weakens the hydrophobic confinement and congests the molecular outflow. Both one-step and multistep well-designed quasistatic compression experiments on a series of nanopores/nonwetting liquid material systems have been performed, and the results confirm the outflow mechanism in remarkable agreement with simulations. This study offers a fundamental understanding of the outflow of confined liquid from hydrophobic nanopores, potentially useful for devising emerging nanoporous-liquid functional systems with reliable and robust reusability. 
    more » « less
  2. Singh R.P., Chalivendra V. (Ed.)
    Thin-walled structures have been widely used in automotive and aerospace industries to improve the system crashworthiness and impact protection. However, during manufacturing, transporting and handling processes, initial geometric imperfections are inevitably introduced to the thin-walled structures, which imposes negative impacts to the mechanical performance and service life of the thin-walled structures. In this study, we have introduced structural imperfection with controlled geometry and dimension to thin-walled steel tubes and characterized the mechanical response of these empty tubes and LN-filled tubes by quasi-static compression tests. Results show, the structural imperfection reduces the energy absorption capacity of empty tubes by about 20%. As the tube is filled with LN, the structural imperfection does not affect the energy absorption capacity of LN filled tube. The enhanced imperfection resistance is attributed to the suppression of imperfection growth caused by the strong liquid-solid interaction between the LN and tube wall. These findings suggest that the LN filling material can effectively reduce the adverse impact of structural imperfection and shed light on future design of thin-walled energy absorption devices. 
    more » « less
  3. NoElastocaloric cooling is a promising solid-state alternative to vapor-compression refrigeration. In conventional systems, such as natural rubber, deformation induces entropy change accompanied by temperature release. Unloading the material restores the entropic state and is accompanied by cooling. Inverse elastocaloric effects have been detailed in shape memory alloys, where deformation induces loss of order and cooling. Here, we report on a distinctive inverse elastocaloric effect in liquid crystalline elastomers (LCEs) containing supramolecular hydrogen bonds. Upon deformation, the supramolecular LCE exhibits initial organization but then disorganizes as the intramesogenic hydrogen bonds are broken. Due to the liquid crystalline nature of the dimeric supramolecular bonds, the mechanochemical bond breakage manifests in a disruption in order. By disrupting the extent of liquid crystallinity in the system, we hypothesize that the network disorganizes to the deformation (e.g., entropy increases) and produces an inverse elastocaloric output.t Available 
    more » « less
  4. Estimating flow and transport properties of porous media that undergo deformation as a result of applying an external pressure or force is important to a wide variety of processes, ranging from injecting a fracking liquid into shale formations, to CO sequestration in spent oil reservoirs. We propose a novel model for estimating the effective flow and transport properties of such porous media. Assuming that the solid matrix of a porous medium undergoes elastic deformation, and given its initial porosity before deformation, as well as the Young’s modulus of its grains, the model uses an extension of the Hertz–Mindlin theory of contact between grains to compute the new PSD that results from applying an external pressure P to the medium, and utilizes the updated PSD in the effective-medium approximation (EMA) to estimate the effective flow and transport properties at pressure P. In the present part of this series, we use the theory to predict the effective permeability as a function of the applied pressure. Comparison between the predictions and experimental data for twenty-four types of sandstones indicates excellent agreement between the two. 
    more » « less
  5. Adsorption-induced swelling occurs in a wide spectrum of natural and engineered porous materials. A key underlying mechanism is the monotonic reduction of solid-fluid surface energy upon fluid adsorption, which lowers the contractive adsorption stress and causes the porous skeleton to swell (Bangham and Fakhoury, 1928). Some mesoporous materials, however, deviate from the monotonic swelling pattern predicted by this mechanism, exhibiting an abrupt shrinkage at intermediate adsorbate partial pressures before swelling resumes and continues to full saturation. This behavior is commonly attributed to capillary condensation of the adsorbate from the vapor to the liquid phase within the pores. Understanding the stresses and the shrinkage induced by capillary condensation is critical in various industrial applications including micro-/nanofabrication, geotechnical engineering in collapsible soils, and sorption-driven actuation technologies. This work aims to develop a unified poromechanics theory that captures the full sequence of adsorption-induced deformation, including initial swelling, contraction during capillary condensation, and resumed expansion near full saturation. The formulation begins with a thermodynamic analysis of an unsaturated deformable porous solid acknowledging the energetics of the solid-fluid (sl), solid-vapor (sv), and liquid-vapor (lv) interfaces. The resulting free energy balance permits the simultaneous derivation of the liquid retention characteristics curve and the coupled mechanical effects driven by adsorption and partial saturation. Within this framework, two strategies for constructing constitutive relations are examined: one explicitly resolves the dynamic evolution of sl-sv-lv interfacial areas to emphasize the underlying physics, while the other partially lumps the surface energies into a macroscopic capillary potential to facilitate model calibration using standard laboratory tests. The models are evaluated using datasets from two markedly different solid-fluid systems: N2 gas adsorption on a hierarchical porous silica at 77 K and water adsorption on a carbon xerogel at 298 K. Both approaches effectively capture the complex, non-monotonic strain isotherms exhibited by the adsorbent. The adsorption-desorption hysteresis is also addressed in a thermodynamically consistent framework. The proposed theory demonstrates both robustness and unifying power in explaining the complex strain isotherms of porous materials along adsorption and desorption paths, covering the entire spectrum from vacuum-dry to fully liquid-saturated states. 
    more » « less