skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Triangulenium Ions: Versatile Organic Photoredox Catalysts for Green-Light-Mediated Reactions
Abstract The development of tunable organic photoredox catalysts remains important in the field of photoredox catalysis. A highly modular and tunable family of trianguleniums (azadioxatriangulenium, diazaoxatriangulenium, and triazatriangulenium), and the related [4]helicene quinacridinium have been used as organic photoredox catalysts for photoreductions and photooxidations under visible light irradiation (λ = 518–640 nm). A highlight of this family of photoredox catalysts is their readily tunable redox properties, leading to different reactivities. We report their use as photocatalysts for the aerobic oxidative hydroxylation of arylboronic acids and the aerobic cross-dehydrogenative coupling reaction of N-phenyl-1,2,3,5-tetrahydroisoquinoline with nitromethane through reductive quenching. Furthermore, their potential as photoreduction catalysts has been demonstrated through the catalysis of an intermolecular atom-transfer radical addition via oxidative quenching. These transformations serve as benchmarks to highlight that the easily synthesized trianguleniums, congeners of the acridiniums, are versatile organic photoredox catalysts with applications in both photooxidations and photoreductions.  more » « less
Award ID(s):
2144018
PAR ID:
10488847
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
thieme
Date Published:
Journal Name:
Synlett
Volume:
35
Issue:
03
ISSN:
0936-5214
Page Range / eLocation ID:
307 to 312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid development of light-activated organic photoredox catalysts has led to the proliferation of powerful synthetic chemical strategies with industrial and pharmaceutical applications. Despite the advancement in synthetic approaches, a detailed understanding of the mechanisms governing these reactions has lagged. Time-resolved optical spectroscopy provides a method to track organic photoredox catalysis processes and reveal the energy pathways that drive reaction mechanisms. These measurements are sensitive to key processes in organic photoredox catalysis such as charge or energy transfer, lifetimes of singlet or triplet states, and solvation dynamics. The sensitivity and specificity of ultrafast spectroscopic measurements can provide a new perspective on the mechanisms of these reactions, including electron-transfer events, the role of solvent, and the short lifetimes of radical intermediates. 
    more » « less
  2. Abstract Phenochalcogenazines such as phenoxazines and phenothiazines have been widely employed as photoredox catalysts (PCs) in small molecule and polymer synthesis. However, the effect of the chalcogenide in these catalysts has not been fully investigated. In this work, a series of four phenochalcogenazines is synthesized to understand how the chalcogenide impacts catalyst properties and performance. Increasing the size of the chalcogenide is found to distort the PC structure, ultimately impacting the properties of each PC. For example, larger chalcogenides destabilize the PC radical cation, possibly resulting in catalyst degradation. In addition, PCs with larger chalcogenides experience increased reorganization during electron transfer, leading to slower electron transfer. Ultimately, catalyst performance is evaluated in organocatalyzed atom transfer radical polymerization and a photooxidation reaction for C(sp2)−N coupling. Results from these experiments highlight that a balance of PC properties is most beneficial for catalysis, including a long‐lived excited state, a stable radical cation, and a low reorganization energy. 
    more » « less
  3. Abstract The field of sustainable heterogeneous catalysis is evolving rapidly, with a strong emphasis on developing catalysts that enhance efficiency. Among various heterogeneous photocatalysts, metal‐organic frameworks (MOFs) have gained significant attention for their exceptional performance in photocatalytic reactions. In this context, contrary to the conventional homogeneous iridium or ruthenium‐based photocatalysts, which face significant challenges in terms of availability, cost, scalability, and recyclability, a new Ba/Ti MOF (ACM‐4) is developed as a heterogeneous catalyst that can mimic/outperform the conventional photocatalysts, offering a more sustainable solution for efficient chemical processes. Its redox potential and triplet energy are comparable to or higher than the conventional catalysts, organic dyes, and metal semiconductors, enabling its use in both electron transfer and energy transfer applications. It facilitates a broad range of coupling reactions involving pharmaceuticals, agrochemicals, and natural products, and is compatible with various transition metals such as nickel, copper, cobalt, and palladium as co‐catalysts. The effectiveness of theACM‐4as a photocatalyst is supported by comprehensive material studies, photophysical, and recycling experiments. These significant findings underscore the potential ofACM‐4as a highly versatile and cost‐effective photoredox catalyst, providing a sustainable, one‐material solution for efficient chemical processes. 
    more » « less
  4. Abstract Mononuclear nonheme iron(II) and 2‐oxoglutarate (Fe/2OG)‐dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C−H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration—a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron‐oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG‐independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation. 
    more » « less
  5. Abstract Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligandsRN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests theRN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. 
    more » « less