Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
Polyatomic molecules have been identified as sensitive probes of chargeparity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both lasercoolable and have parity doublets in the ground electronic
 Award ID(s):
 1847550
 NSFPAR ID:
 10488857
 Publisher / Repository:
 IOP
 Date Published:
 Journal Name:
 New Journal of Physics
 Volume:
 25
 Issue:
 7
 ISSN:
 13672630
 Page Range / eLocation ID:
 073014
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volumeaveraged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\lesssim {10}^{3}$ ). In particular, the neutral fraction evolution of the IGM at the critical redshift range of ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\sim 1$z = 6–7 is poorly constrained. We present new constraints on at ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}$z ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive modelindependent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first modelindependent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.3)<0.79\pm 0.04$σ ), (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.5)<0.87\pm 0.03$σ ), and (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.7)<{0.94}_{0.09}^{+0.06}$σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
Abstract One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, the
z axis) with frequencyω _{0}due to absorption of lowpower microwaves of frequencyω _{0}under the resonance conditions and in the absence of any applied bias voltage. The twodecadesold ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that component of spin current vector ${I}^{{S}_{z}}$ is timeindependent while $({I}^{{S}_{x}}(t),{I}^{{S}_{y}}(t),{I}^{{S}_{z}})\propto {\omega}_{0}$ and ${I}^{{S}_{x}}(t)$ oscillate harmonically in time with a single frequency ${I}^{{S}_{y}}(t)$ω _{0}whereas pumped charge current is zero in the same adiabatic $I\equiv 0$ limit. Here we employ more general approaches than the ‘standard model’, namely the timedependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spin $\propto {\omega}_{0}$ and charge ${I}^{{S}_{\alpha}}(t)$I (t ) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiples of the driving frequency $N{\omega}_{0}$ω _{0}. The cutoff order of such high harmonics increases with SOC strength, reaching in the onedimensional FM or AFM models chosen for demonstration. A higher cutoff ${N}_{\mathrm{m}\mathrm{a}\mathrm{x}}\simeq 11$ can be achieved in realistic twodimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures. ${N}_{\mathrm{m}\mathrm{a}\mathrm{x}}\simeq 25$ 
Abstract We measure the thermal electron energization in 1D and 2D particleincell simulations of quasiperpendicular, lowbeta (
β _{p}= 0.25) collisionless ion–electron shocks with mass ratiom _{i}/m _{e}= 200, fast Mach number –4, and upstream magnetic field angle ${\mathcal{M}}_{\mathrm{ms}}=1$θ _{Bn}= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, $\stackrel{\u02c6}{\mathit{n}}$ parallel electric potential jump, ΔB ϕ _{∥}, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the preshock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measure $\mathrm{\Delta}{\varphi}_{\parallel}/(0.5{m}_{\mathrm{i}}{{u}_{\mathrm{sh}}}^{2})\sim 0.1$ϕ _{∥}, including the use of de Hoffmann–Teller frame fields, agree to tensofpercent accuracy. Neglecting offdiagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ _{∥}in our lowβ _{p}shocks. We further focus on twoθ _{Bn}= 65° shocks: a ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$ ) case with a long, 30 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}1.8$d _{i}precursor of whistler waves along , and a $\stackrel{\u02c6}{\mathit{n}}$ ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}7$ ) case with a shorter, 5 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}3.2$d _{i}precursor of whistlers oblique to both and $\stackrel{\u02c6}{\mathit{n}}$ ;B d _{i}is the ion skin depth. Within the precursors,ϕ _{∥}has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the , ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$θ _{Bn}= 65° case,ϕ _{∥}shows a weak dependence on the electron plasmatocyclotron frequency ratioω _{pe}/Ω_{ce}, andϕ _{∥}decreases by a factor of 2 asm _{i}/m _{e}is raised to the true proton–electron value of 1836. 
Abstract We measure the COtoH_{2}conversion factor (
α _{CO}) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from farinfrared emission as a tracer of the gas surface density and assuming a constant dusttometal ratio. In total, we have ∼790 and ∼610 independent measurements ofα _{CO}for CO (2–1) and (1–0), respectively. The mean values forα _{CO (2–1)}andα _{CO (1–0)}are and ${9.3}_{5.4}^{+4.6}$ , respectively. The COintensityweighted mean is 5.69 for ${4.2}_{2.0}^{+1.9}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{pc}}^{2}\phantom{\rule{0.25em}{0ex}}{(\mathrm{K}\phantom{\rule{0.25em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1})}^{1}$α _{CO (2–1)}and 3.33 forα _{CO (1–0)}. We examine howα _{CO}scales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dustmassweighted average interstellar radiation field strength ( ). Among them, $\overline{U}$ , Σ_{SFR}, and the integrated CO intensity ( $\overline{U}$W _{CO}) have the strongest anticorrelation with spatially resolvedα _{CO}. We provide linear regression results toα _{CO}for all quantities tested. At galaxyintegrated scales, we observe significant correlations betweenα _{CO}andW _{CO}, metallicity, , and Σ_{SFR}. We also find that $\overline{U}$α _{CO}in each galaxy decreases with the stellar mass surface density (Σ_{⋆}) in highsurfacedensity regions (Σ_{⋆}≥ 100M _{⊙}pc^{−2}), following the powerlaw relations and ${\alpha}_{\mathrm{CO}\phantom{\rule{0.25em}{0ex}}(2\u20131)}\propto {\mathrm{\Sigma}}_{\star}^{0.5}$ . The powerlaw index is insensitive to the assumed dusttometal ratio. We interpret the decrease in ${\alpha}_{\mathrm{CO}\phantom{\rule{0.25em}{0ex}}(1\u20130)}\propto {\mathrm{\Sigma}}_{\star}^{0.2}$α _{CO}with increasing Σ_{⋆}as a result of higher velocity dispersion compared to isolated, selfgravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inα _{CO}. The decrease inα _{CO}at high Σ_{⋆}is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburstlike” conversion factors. 
Abstract We present a study of twophoton pathways for the transfer of NaCs molecules to their rovibrational ground state. Starting from NaCs Feshbach molecules, we perform boundbound excited state spectroscopy in the wavelength range from 900 nm to 940 nm, covering more than 30 vibrational states of the
, ${c}^{3}{\mathrm{\Sigma}}^{+}$ , and ${b}^{3}\mathrm{\Pi}$ electronic states. Analyzing the rotational substructure, we identify the highly mixed ${B}^{1}\mathrm{\Pi}$ state as an efficient bridge for stimulated Raman adiabatic passage. We demonstrate transfer into the NaCs ground state with an efficiency of up to 88(4)%. Highly efficient transfer is critical for the realization of manybody quantum phases of strongly dipolar NaCs molecules and high fidelity detection of single molecules, for example, in spin physics experiments in optical lattices and quantum information experiments in optical tweezer arrays. ${c}^{3}{\mathrm{\Sigma}}_{1}^{+}\text{\hspace{0.17em}}v=22\u27e9\sim {b}^{3}{\mathrm{\Pi}}_{1}\text{\hspace{0.17em}}v=54\u27e9$