skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Skin microbiome disturbance linked to drought‐associated amphibian disease
Abstract The onset of global climate change has led to abnormal rainfall patterns, disrupting associations between wildlife and their symbiotic microorganisms. We monitored a population of pumpkin toadlets and their skin bacteria in the Brazilian Atlantic Forest during a drought. Given the recognized ability of some amphibian skin bacteria to inhibit the widespread fungal pathogenBatrachochytrium dendrobatidis(Bd), we investigated links between skin microbiome health, susceptibility to Bd and host mortality during a die‐off event. We found that rainfall deficit was an indirect predictor of Bd loads through microbiome disruption, while its direct effect on Bd was weak. The microbiome was characterized by fewer putative Bd‐inhibitory bacteria following the drought, which points to a one‐month lagged effect of drought on the microbiome that may have increased toadlet susceptibility to Bd. Our study underscores the capacity of rainfall variability to disturb complex host–microbiome interactions and alter wildlife disease dynamics.  more » « less
Award ID(s):
2303908 2227340 2003523 2120084
PAR ID:
10488995
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
1
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host–pathogen interactions. The amphibian pathogen,Batrachochytrium dendrobatidis(Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown.The aim of this study was to examine whether host immune and microbiome defences againstBdcorrespond with infection risk and seasonal fluctuations in temperature and humidity.Over the course of a year, five populations of Southern leopard frogs (Rana[Lithobates]sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness ofBdgrowth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibitBdgrowth in vitro were used as an estimate of predicted anti‐Bdfunction of the skin microbiome.Batrachochytrium dendrobatidisdynamics followed the expected seasonal fluctuations—peaks in cooler months—which coincided with when host mucosal defences were most potent againstBd. Specifically, the concentration and expression of stored AMPs cycled synchronously withBddynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibitBdgrowth was greatest when risk ofBdinfection was highest.We interpret the increase in peptide storage in the fall and the shift to a more anti‐Bdmicrobiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool‐adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality ofBdin this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature. 
    more » « less
  2. Abstract BackgroundHost microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbeBatrachochytrium dendrobatidis(Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species. ResultsIntensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence inIschnocnema henseliibut no Bd detections inHaddadus binotatus.Haddadus binotatuscarried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization. ConclusionsOur findings suggest that community structure of the bacteriome might drive Bd resistance inH. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses. 
    more » « less
  3. Abstract Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes. 
    more » « less
  4. Symbiotic relationships between animals and microbes are important for a range of functions, from digestion to protection from pathogens. However, the impact of temperature variation on these animal-microbe interactions remains poorly understood. Amphibians have experienced population declines and even extinctions on a global scale due to chytridiomycosis, a disease caused by chytrid fungi in the genusBatrachochytrium. Variation in susceptibility to this disease exists within and among host species. While the mechanisms generating differences in host susceptibility remain elusive, differences in immune system components, as well as variation in host and environmental temperatures, have been associated with this variation. The symbiotic cutaneous bacteria of amphibians are another potential cause for variation in susceptibility to chytridiomycosis, with some bacterial species producing antifungal metabolites that prevent the growth ofBd. The growth of bothBdand bacteria are affected by temperature, and thus we hypothesized that amphibian skin bacteria may be more effective at preventingBdgrowth at certain temperatures. To test this, we collected bacteria from the skins of frogs, harvested the metabolites they produced when grown at three different temperatures, and then grewBdin the presence of those metabolites under those same three temperatures in a three-by-three fully crossed design. We found that both the temperature at which cutaneous bacteria were grown (and metabolites produced) as well as the temperature at whichBdis grown can impact the ability of cutaneous bacteria to inhibit the growth ofBd. While some bacterial isolates showed the ability to inhibitBdgrowth across multiple temperature treatments, no isolate was found to be inhibitive across all combinations of bacterial incubation orBdchallenge temperatures, suggesting that temperature affects both the metabolites produced and the effectiveness of those metabolites against theBdpathogen. These findings move us closer to a mechanistic understanding of why chytridiomycosis outbreaks and related amphibian declines are often limited to certain climates and seasons. 
    more » « less
  5. Host-associated microbiomes play important roles in host health and pathogen defense. In amphibians, the skin-associated microbiota can contribute to innate immunity with potential implications for disease management. Few studies have examined season-long temporal variation in the amphibian skin-associated microbiome, and the interactions between bacteria and fungi on amphibian skin remain poorly understood. We characterize season-long temporal variation in the skin-associated microbiome of the western tiger salamander ( Ambystoma mavortium ) for both bacteria and fungi between sites and across salamander life stages. Two hundred seven skin-associated microbiome samples were collected from salamanders at two Rocky Mountain lakes throughout the summer and fall of 2018, and 127 additional microbiome samples were collected from lake water and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian Dirichlet-multinomial regression to estimate the relative abundances of bacterial and fungal taxa, test for differential abundance, examine microbial selection, and derive alpha diversity. We predicted the ability of bacterial communities to inhibit the amphibian chytrid fungus Batrachochytrium dendrobatidis ( Bd ), a cutaneous fungal pathogen, using stochastic character mapping and a database of Bd -inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in community composition through time, between sites, and with salamander age and life stage. We further found that temporal trends in community composition were specific to each combination of salamander age, life stage, and lake. We found salamander skin to be selective for microbes, with many taxa disproportionately represented relative to the environment. Salamander skin appeared to select for predicted Bd -inhibitory bacteria, and we found a negative relationship between the relative abundances of predicted Bd -inhibitory bacteria and Bd . We hope these findings will assist in the conservation of amphibian species threatened by chytridiomycosis and other emerging diseases. 
    more » « less