skip to main content


Title: Effects of temperature on the interaction between amphibian skin bacteria and Batrachochytrium dendrobatidis

Symbiotic relationships between animals and microbes are important for a range of functions, from digestion to protection from pathogens. However, the impact of temperature variation on these animal-microbe interactions remains poorly understood. Amphibians have experienced population declines and even extinctions on a global scale due to chytridiomycosis, a disease caused by chytrid fungi in the genusBatrachochytrium. Variation in susceptibility to this disease exists within and among host species. While the mechanisms generating differences in host susceptibility remain elusive, differences in immune system components, as well as variation in host and environmental temperatures, have been associated with this variation. The symbiotic cutaneous bacteria of amphibians are another potential cause for variation in susceptibility to chytridiomycosis, with some bacterial species producing antifungal metabolites that prevent the growth ofBd. The growth of bothBdand bacteria are affected by temperature, and thus we hypothesized that amphibian skin bacteria may be more effective at preventingBdgrowth at certain temperatures. To test this, we collected bacteria from the skins of frogs, harvested the metabolites they produced when grown at three different temperatures, and then grewBdin the presence of those metabolites under those same three temperatures in a three-by-three fully crossed design. We found that both the temperature at which cutaneous bacteria were grown (and metabolites produced) as well as the temperature at whichBdis grown can impact the ability of cutaneous bacteria to inhibit the growth ofBd. While some bacterial isolates showed the ability to inhibitBdgrowth across multiple temperature treatments, no isolate was found to be inhibitive across all combinations of bacterial incubation orBdchallenge temperatures, suggesting that temperature affects both the metabolites produced and the effectiveness of those metabolites against theBdpathogen. These findings move us closer to a mechanistic understanding of why chytridiomycosis outbreaks and related amphibian declines are often limited to certain climates and seasons.

 
more » « less
Award ID(s):
2120084
PAR ID:
10512693
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers in Microbiology
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
14
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Host-associated microbiomes play important roles in host health and pathogen defense. In amphibians, the skin-associated microbiota can contribute to innate immunity with potential implications for disease management. Few studies have examined season-long temporal variation in the amphibian skin-associated microbiome, and the interactions between bacteria and fungi on amphibian skin remain poorly understood. We characterize season-long temporal variation in the skin-associated microbiome of the western tiger salamander ( Ambystoma mavortium ) for both bacteria and fungi between sites and across salamander life stages. Two hundred seven skin-associated microbiome samples were collected from salamanders at two Rocky Mountain lakes throughout the summer and fall of 2018, and 127 additional microbiome samples were collected from lake water and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian Dirichlet-multinomial regression to estimate the relative abundances of bacterial and fungal taxa, test for differential abundance, examine microbial selection, and derive alpha diversity. We predicted the ability of bacterial communities to inhibit the amphibian chytrid fungus Batrachochytrium dendrobatidis ( Bd ), a cutaneous fungal pathogen, using stochastic character mapping and a database of Bd -inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in community composition through time, between sites, and with salamander age and life stage. We further found that temporal trends in community composition were specific to each combination of salamander age, life stage, and lake. We found salamander skin to be selective for microbes, with many taxa disproportionately represented relative to the environment. Salamander skin appeared to select for predicted Bd -inhibitory bacteria, and we found a negative relationship between the relative abundances of predicted Bd -inhibitory bacteria and Bd . We hope these findings will assist in the conservation of amphibian species threatened by chytridiomycosis and other emerging diseases. 
    more » « less
  2. ABSTRACT

    Host-associated microbial communities can influence physiological processes of macroorganisms, including contributing to infectious disease resistance. For instance, some bacteria that live on amphibian skin produce antifungal compounds that inhibit two lethal fungal pathogens, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Therefore, differences in microbiome composition among host species or populations within a species can contribute to variation in susceptibility to Bd/Bsal. This study applies 16S rRNA sequencing to characterize the skin bacterial microbiomes of three widespread terrestrial salamander genera native to the western United States. Using a metacommunity structure analysis, we identified dispersal barriers for these influential bacteria between salamander families and localities. We also analysed the effects of habitat characteristics such as percent natural cover and temperature seasonality on the microbiome. We found that certain environmental variables may influence the skin microbial communities of some salamander genera more strongly than others. Each salamander family had a somewhat distinct community of putative anti-Bd skin bacteria, suggesting that salamanders may select for a functional assembly of cutaneous symbionts that could differ in its ability to protect these amphibians from disease. Our observations raise the need to consider host identity and environmental heterogeneity during the selection of probiotics to treat wildlife diseases.

     
    more » « less
  3. The emerging fungal pathogen, Batrachochytrium dendrobatidis ( Bd ), which can cause a fatal disease called chytridiomycosis, is implicated in the collapse of hundreds of host amphibian species. We describe chytridiomycosis dynamics in two co-occurring terrestrial salamander species, the Santa Lucia Mountains slender salamander, Batrachoseps luciae , and the arboreal salamander, Aneides lugubris . We (1) conduct a retrospective Bd -infection survey of specimens collected over the last century, (2) estimate present-day Bd infections in wild populations, (3) use generalized linear models (GLM) to identify biotic and abiotic correlates of infection risk, (4) investigate susceptibility of hosts exposed to Bd in laboratory trials, and (5) examine the ability of host skin bacteria to inhibit Bd in culture. Our historical survey of 2,866 specimens revealed that for most of the early 20th century (~1920–1969), Bd was not detected in either species. By the 1990s the proportion of infected specimens was 29 and 17% ( B. luciae and A. lugubris , respectively), and in the 2010s it was 10 and 17%. This was similar to the number of infected samples from contemporary populations (2014–2015) at 10 and 18%. We found that both hosts experience signs of chytridiomycosis and suffered high Bd -caused mortality (88 and 71% for B. luciae and A. lugubris , respectively). Our GLM revealed that Bd -infection probability was positively correlated with intraspecific group size and proximity to heterospecifics but not to abiotic factors such as precipitation, minimum temperature, maximum temperature, mean temperature, and elevation, or to the size of the hosts. Finally, we found that both host species contain symbiotic skin-bacteria that inhibit growth of Bd in laboratory trials. Our results provide new evidence consistent with other studies showing a relatively recent Bd invasion of amphibian host populations in western North America and suggest that the spread of the pathogen may be enabled both through conspecific and heterospecific host interactions. Our results suggest that wildlife disease studies should assess host-pathogen dynamics that consider the interactions and effects of multiple hosts, as well as the historical context of pathogen invasion, establishment, and epizootic to enzootic transitions to better understand and predict disease dynamics. 
    more » « less
  4. Abstract

    The onset of global climate change has led to abnormal rainfall patterns, disrupting associations between wildlife and their symbiotic microorganisms. We monitored a population of pumpkin toadlets and their skin bacteria in the Brazilian Atlantic Forest during a drought. Given the recognized ability of some amphibian skin bacteria to inhibit the widespread fungal pathogenBatrachochytrium dendrobatidis(Bd), we investigated links between skin microbiome health, susceptibility to Bd and host mortality during a die‐off event. We found that rainfall deficit was an indirect predictor of Bd loads through microbiome disruption, while its direct effect on Bd was weak. The microbiome was characterized by fewer putative Bd‐inhibitory bacteria following the drought, which points to a one‐month lagged effect of drought on the microbiome that may have increased toadlet susceptibility to Bd. Our study underscores the capacity of rainfall variability to disturb complex host–microbiome interactions and alter wildlife disease dynamics.

     
    more » « less
  5. Abstract

    Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), has led to population declines and extinctions of frog species around the world. While it is known that symbiotic skin bacteria can play a protective role against pathogens, it is not known how these defensive bacteria are integrated into the bacterial community on amphibian skin. In this study, we used 16S rRNA gene amplicon sequencing, culturing and Bd inhibition bioassays to characterize the communities of skin bacteria on three Neotropical frog species that persist in a Bd-infected area in Panama and determined the abundance and integration of anti-Bd bacteria into the community. We found that the two treefrog species had a similar bacterial community structure, which differed from the more diverse community found on the terrestrial frog. Co-occurrence networks also revealed differences between frog species such that the treefrogs had a significantly higher number of culturable Bd-inhibitory OTUs with high centrality scores compared with the terrestrial frog. We found that culture-dependent OTUs captured between 21 and 39% of the total relative abundance revealed in culture-independent communities. Our results suggest different ecological strategies occurring within skin antifungal communities on host species that have not succumbed to Bd infections in the wild.

     
    more » « less