skip to main content

Title: Metal-poor stars observed with the Magellan Telescope – IV. Neutron-capture element signatures in 27 main-sequence stars

We present a chemo-dynamical analysis for 27 near main-sequence turnoff metal-poor stars, including 20 stars analysed for the first time. The sample spans a range in [Fe/H] from −2.5 to −3.6, with 44 per cent having [Fe/H]<−2.9. We derived chemical abundances for 17 elements, including strontium and barium. We derive Li abundances for the sample, which are in good agreement with the ‘Spite Plateau’ value. The lighter elements (Z < 30) generally agree well with those of other low-metallicity halo stars. This broadly indicates chemically homogeneous gas at the earliest times. We used the [Sr/Ba] versus [Ba/Fe] diagram to classify metal-poor stars into five populations based on their observed ratios. We find HE 0232 − 3755 to be a likely main r-process star, and HE 2214 − 6127 and HE 2332 − 3039 to be limited-r stars. CS30302-145, HE 2045 − 5057, and CD −24°17504 plausibly originated in long-disrupted early dwarf galaxies. We also find that the derived [Sr/H] and [Ba/H] values for CD −24°17504 are not inconsistent with the predicted yields of the s-process in massive rotating low-metallicity stars models. Further theoretical explorations will be helpful to better understand the earliest mechanisms and time scales of heavy element production for comparison with these and other observational abundance data. Finally, we investigate the orbital histories of our stars. Most display halo-like kinematics although three stars (CS 29504-018, HE 0223 − 2814, and HE 2133 − 0421) appear to be disc-like in nature. This confirms the extragalactic origin for CS 30302-145, HE 2045 − 5057, and, in particular, CD −24°17504 which likely originated from a small accreted stellar system as one of the oldest stars.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 2912-2929
["p. 2912-2929"]
Sponsoring Org:
National Science Foundation
More Like this

    We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H]  = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.

    more » « less

    The investigation of the metal-poor tail in the Galactic bulge provides unique information on the early Milky Way assembly and evolution. A chemo-dynamical analysis of 17 very metal-poor stars (VMP, [Fe/H]<−2.0) selected from the Pristine Inner Galaxy Survey was carried out based on Gemini/GRACES spectra. The chemistry suggests that the majority of our stars are very similar to metal-poor stars in the Galactic halo. Orbits calculated from Gaia EDR3 imply these stars are brought into the bulge during the earliest Galactic assembly. Most of our stars have large [Na,Ca/Mg] abundances, and thus show little evidence of enrichment by pair-instability supernovae. Two of our stars (P171457 and P184700) have chemical abundances compatible with second-generation globular cluster stars, suggestive of the presence of ancient and now dissolved globular clusters in the inner Galaxy. One of them (P171457) is extremely metal-poor ([Fe/H]<−3.0) and well below the metallicity floor of globular clusters, which supports the growing evidence for the existence of lower-metallicity globular clusters in the early Universe. A third star (P180956, [Fe/H]∼−2) has low [Na,Ca/Mg] and very low [Ba/Fe] for its metallicity, which are consistent with formation in a system polluted by only one or a few low-mass supernovae. Interestingly, its orbit is confined to the Galactic plane, like other very metal-poor stars found in the literature, which have been associated with the earliest building blocks of the Milky Way.

    more » « less
  3. Abstract

    We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies.

    more » « less

    We present a high-resolution (R ∼ 35 000), high signal-to-noise (S/N = 350) Magellan/MIKE spectrum of the bright extremely metal-poor star 2MASS J1808−5104. We find [Fe/H] = −4.01 (spectroscopic LTE stellar parameters), [Fe/H] = −3.8 (photometric stellar parameters), and [Fe/H] = −3.7 (spectroscopic NLTE stellar parameters). We measured a carbon-to-iron ratio of [C/Fe] = 0.38 from the CH G-band. J1808−5104 is thus not carbon-enhanced, contrary to many other stars with similarly low-iron abundances. We also determine, for the first time, a barium abundance ([Ba/Fe] = −0.78), and obtain a significantly reduced upper limit for the nitrogen abundance ([N/Fe] < −0.2). For its [Ba/Fe] abundance, J1808−5104 has a lower [Sr/Ba] ratio compared to other stars, consistent with behaviour of stars in ultra-faint dwarf galaxies. We also fit the abundance pattern of J1808−5104 with nucleosynthesis yields from a grid of Population III supernova models. There is a good fit to the abundance pattern that suggests J1808−5104 originated from gas enriched by a single massive supernova with a high explosion energy of E = 10 × 1051 erg and a progenitor stellar mass of M = 29.5 M⊙. Interestingly, J1808−5104 is a member of the Galactic thin disc, as confirmed by our detailed kinematic analysis and calculated stellar actions and velocities. Finally, we also established the orbital history of J1808−5104 using our time-dependent Galactic potential the ORIENT. J1808−5104 appears to have a stable quasi-circular orbit and been largely confined to the thin disc. This unique orbital history, the star’s very old age (∼13.5 Gyr), and the low [C/Fe] and [Sr/Ba] ratios suggest that J1808−5104 may have formed at the earliest epoch of the hierarchical assembly of the Milky Way, and it is most likely associated with the primordial thin disc.

    more » « less
  5. ABSTRACT We present chemical abundances for 21 elements (from Li to Eu) in 150 metal-poor Galactic stars spanning −4.1 < [Fe/H] < −2.1. The targets were selected from the SkyMapper survey and include 90 objects with [Fe/H] ≤ −3 of which some 15 have [Fe/H] ≤ −3.5. When combining the sample with our previous studies, we find that the metallicity distribution function has a power-law slope of Δ(log N)/Δ[Fe/H] = 1.51 ± 0.01 dex per dex over the range −4 ≤ [Fe/H] ≤ −3. With only seven carbon-enhanced metal-poor stars in the sample, we again find that the selection of metal-poor stars based on SkyMapper filters is biased against highly carbon-rich stars for [Fe/H] > −3.5. Of the 20 objects for which we could measure nitrogen, 11 are nitrogen-enhanced metal-poor (NEMP) stars. Within our sample, the high NEMP fraction (55 per cent ± 21 per cent) is compatible with the upper range of predicted values (between 12 per cent and 35 per cent). The chemical abundance ratios [X/Fe] versus [Fe/H] exhibit similar trends to previous studies of metal-poor stars and Galactic chemical evolution models. We report the discovery of nine new r-I stars, four new r-II stars, one of which is the most metal-poor known, nine low-α stars with [α/Fe] ≤ 0.15 as well as one unusual star with [Zn/Fe] = +1.4 and [Sr/Fe] = +1.2 but with normal [Ba/Fe]. Finally, we combine our sample with literature data to provide the most extensive view of the early chemical enrichment of the Milky Way Galaxy. 
    more » « less