skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: The chemical abundance pattern of the extremely metal-poor thin disc star 2MASS J1808−5104 and its origins
ABSTRACT

We present a high-resolution (R ∼ 35 000), high signal-to-noise (S/N = 350) Magellan/MIKE spectrum of the bright extremely metal-poor star 2MASS J1808−5104. We find [Fe/H] = −4.01 (spectroscopic LTE stellar parameters), [Fe/H] = −3.8 (photometric stellar parameters), and [Fe/H] = −3.7 (spectroscopic NLTE stellar parameters). We measured a carbon-to-iron ratio of [C/Fe] = 0.38 from the CH G-band. J1808−5104 is thus not carbon-enhanced, contrary to many other stars with similarly low-iron abundances. We also determine, for the first time, a barium abundance ([Ba/Fe] = −0.78), and obtain a significantly reduced upper limit for the nitrogen abundance ([N/Fe] < −0.2). For its [Ba/Fe] abundance, J1808−5104 has a lower [Sr/Ba] ratio compared to other stars, consistent with behaviour of stars in ultra-faint dwarf galaxies. We also fit the abundance pattern of J1808−5104 with nucleosynthesis yields from a grid of Population III supernova models. There is a good fit to the abundance pattern that suggests J1808−5104 originated from gas enriched by a single massive supernova with a high explosion energy of E = 10 × 1051 erg and a progenitor stellar mass of M = 29.5 M⊙. Interestingly, J1808−5104 is a member of the Galactic thin disc, as confirmed by our detailed kinematic analysis and calculated stellar actions and velocities. Finally, we also established the orbital history of J1808−5104 using our time-dependent Galactic potential the ORIENT. J1808−5104 appears to have a stable quasi-circular orbit and been largely confined to the thin disc. This unique orbital history, the star’s very old age (∼13.5 Gyr), and the low [C/Fe] and [Sr/Ba] ratios suggest that J1808−5104 may have formed at the earliest epoch of the hierarchical assembly of the Milky Way, and it is most likely associated with the primordial thin disc.

 
more » « less
Award ID(s):
1716251 1255160 1927130
NSF-PAR ID:
10378074
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3993-4004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We report the spectroscopic analysis of 20 halo ab-type RR Lyrae stars with heliocentric distances between 15 and 165 kpc, conducted using medium-resolution spectra from the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We obtain the systemic line-of-sight velocities of our targets with typical uncertainties of 5–10 km s−1 and compute orbital parameters for a subsample out to 50 kpc from the Galactic centre, including proper motion data from Gaia DR3. The orientation of our stars’ orbits, determined for an isolated Milky Way and for a model perturbed by the Large Magellanic Cloud, appears to suggest an accreted origin for at least half of the sample. In addition, we derive atmospheric parameters and chemical abundance ratios for seven stars beyond 20 kpc. The derived α-abundances of five of these stars follow a Milky Way halo-like trend, while the other two display an underabundance of α-elements for their [Fe/H], indicating an association with accretion events. Furthermore, based on the [Sr/Ba] ratio, we can speculate about the conditions for the formation of a potential chemically peculiar carbon-enhanced metal-poor (CEMP) RR Lyrae star. By analysing the stars’ orbital parameters and abundance ratios, we find hints of association of two of our stars with two massive satellites, namely the Large Magellanic Cloud and Sagittarius. Overall, our results are in line with the suggestion that the accretion of sub-haloes largely contributes to the outer halo stellar populations.

     
    more » « less
  2. Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. 
    more » « less
  3. null (Ed.)
    Abstract The S2 stream is a kinematically cold stream that is plunging downwards through the Galactic disc. It may be part of a hotter and more diffuse structure called the Helmi stream. We present a multi-instrument chemical analysis of the stars in the metal-poor S2 stream using both high- and low-resolution spectroscopy, complemented with a re-analysis of the archival data to give a total sample of 62 S2 members. Our high-resolution program provides α-elements (C, Mg, Si, Ca and Ti), iron-peak elements (V, Cr, Mn, Fe, Ni), n-capture process elements (Sr, Ba) and other elements such as Li, Na, Al, and Sc for a subsample of S2 objects. We report coherent abundance patterns over a large metallicity spread (∼1 dex) confirming that the S2 stream was produced by a disrupted dwarf galaxy. The combination of S2’s α-elements displays a mildly decreasing trend with increasing metallicity which can be tentatively interpreted as a “knee” at [Fe/H]<−2. At the low metallicity end, the n-capture elements in S2 may be dominated by r-process production however several stars are Ba-enhanced, but unusually poor in Sr. Moreover, some of the low-[Fe/H] stars appear to be carbon-enhanced. We interpret the observed abundance patterns with the help of chemical evolution models that demonstrate the need for modest star-formation efficiency and low wind efficiency confirming that the progenitor of S2 was a primitive dwarf galaxy. 
    more » « less
  4. ABSTRACT

    We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H]  = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.

     
    more » « less
  5. ABSTRACT Recently, a new cylindrical-shaped stream of stars up to 700 pc long was discovered hiding in the Galactic disc using kinematic data enabled by the Gaia mission. This stream of stars, dubbed Pisces–Eridanus (Psc–Eri), was initially thought to be as old as 1 Gyr, yet its stars shared a rotation period distribution consistent with a population that was 120 Myr old. Here, we explore the detailed chemical nature of this stellar stream. We carried out high-resolution spectroscopic follow-up of 42 Psc–Eri stars using McDonald Observatory and combined these data with information for 40 members observed with the low-resolution LAMOST spectroscopic survey. Together, these data enabled us to measure the abundance distribution of light/odd-Z (Li, Na, Al, Sc, V), α (Mg, Si, Ca, Ti), Fe-peak (Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements along the Psc–Eri stream. We find that the stream is (1) near-solar metallicity with [Fe/H] = –0.03 dex and (2) has a metallicity spread of 0.07 dex (or 0.04 dex when outliers are excluded). We also find that (3) the abundance of Li indicates that Psc–Eri is ∼120 Myr old, consistent with its gyrochronology age. Additionally, Psc–Eri has (4) [X/Fe] abundance spreads that are just larger than the typical uncertainty in most elements, (5) it is a cylindrical-like system whose outer edges rotate about the centre, and (6) no significant abundance gradients along its major axis except a potentially weak gradient in [Si/Fe]. These results show that Psc–Eri is a uniquely close young chemically interesting laboratory for testing our understanding of star and planet formation. 
    more » « less