skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Virtual Reality Cleanroom Simulation in a Mixed Nanoelectronics Classroom
Given the strategic importance of the semiconductor manufacturing sector and the CHIPS Act impact on microelectronics, it is more imperative than ever to train the next generation of scientists and engineers in the field. However, this is a challenging feat since nanofabrication education uses hands-on cleanroom facilities. Since cleanrooms are expensive, have access constraints due to safety concerns, and offer limited instructional space, class sizes and outreach events are limited. To complement instruction in nanotechnology education, there is some open- or educational-access software, which is computer-based and focuses only on training for individual equipment, not on the typical workflow for device fabrication. The objective of this work was to develop an accessible virtual reality ecosystem that provides an immersive education and outreach on device nanofabrication that is user-friendly for a broad range of audiences. At the George Washington University (GWU), a virtual reality cleanroom prototype has been developed. It consists of a 45-minute gameplay module that covers the process flow for the fabrication of micro-scale resistors, from sample preparation to electrical characterization. We also performed a mixed methods study to investigate how 5 students in a nanoelectronics course utilized this virtual reality cleanroom prototype and what changes they recommend to improve its user interface and learner experience. The study population for this work-in-progress consisted of students enrolled in a nanoelectronics course at GWU during the 2022-2023 school year. Students taking this course can be undergraduate (junior or senior) or graduate (masters or PhD). The research questions for this study were 1) what is the user experience with the virtual reality cleanroom prototype, 2) what challenges, if any, did students experience, and 3) what changes did students recommend to improve the virtual reality cleanroom prototype learner experience? Preliminary results indicate that the students found the virtual reality cleanroom simulator helpful in repeatedly exploring the cleanroom space and the nanofabrication process flow in a safe way, thus developing more confidence in utilizing the actual cleanroom facility. The results of this study will provide insight on the design of future modules with more complicated levels and device process flows. Moreover, the study could inform the development of other virtual reality simulators for other lab activities. The improved usability of the proposed software could provide students in large classes or attending online programs in electrical and computer engineering, as well as K-12 students participating in nanotechnology-related outreach events, the opportunity to conduct realistic process workflows, learn first-hand about nanofabrication, and practice using a nanofabrication lab via trial and error in a safe virtual environment.  more » « less
Award ID(s):
2239951
PAR ID:
10489050
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
https://peer.asee.org/44588
Date Published:
Journal Name:
2023 American Society for Engineering Education (ASEE) Annual Conference & Exposition
Format(s):
Medium: X
Location:
Baltimore, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biomimicry is the practice of imitating naturally occurring bio‐designs through engineering and invention. For instance,Blue Morphobutterfly wing colors are a result of the reflection and refraction of nanostructures embedded in the wing and have inspired practical applications in nanofabrication and photonics. Interdisciplinary science educational materials have been developed that demonstrate the cross‐disciplinary aspects and biomimetic properties used in designing nano‐based devices. The unique optical properties of theBlue Morphowing provides an excellent source of demonstrating how aspects of chemistry, biology, physics, and nanotechnology relate. Specifically, these educational tools demonstrate concepts including natural selection, chemical and physical properties, structure at the nanoscale, optical, and electromagnetic design. In addition, the engaging activities are correlated to how nanotechnology drives invention and provides students a mechanism to be introduced to the possibilities nanotechnology provides. A comprehensive combination of lab, cleanroom, and classroom activities are suggested to promote remote learning. 
    more » « less
  2. Not AvailableWith a high demand to fill jobs in the semiconductor manufacturing due to the Chips Act there is a need to increase job readiness in graduate education, as industry members think current graduate students are not well prepared to transition from academia to industry. Current graduate academic education pedagogy does an excellent job of providing students with knowledge and scientific skills, such as technical writing and communication. However, current graduate education often does not fully prepare students for industry. Students can get the necessary experience through an internship, but this is not always possible due to location, research time constraints, citizenship, and academic time commitments. Students often struggle with transitioning from an academic setting to industry, because they have only ever experienced academia, and most faculty teaching students have little or not experience working in industry. To overcome this challenge, we developed a novel two course curriculum that aims to mimic a semiconductor industry internship. This is accomplished through “role-playing” courses where students act as internships in the 1st semester (onboarding) and then they transition to employees in the second semester, where they will work with other “students/employees” on creating a “startup” microsystem company. The instructors act as Program Managers/ boses. The courses use problem-based learning (PBL) in a nanofabrication cleanroom. The courses are designed to give students hands-on experience to provide them with the knowledge, skills, and abilities (KSA) that are needed in industry. The key KSA’s were determined by an industrial panel of process engineers via a survey which was used to determine which KSA industry (multinational and SME) value the most. The same survey was given to faculty members to compare differences between what faculty and industry value as critical KSA’s needed in the semiconductor industry. To determine where the gaps were between traditional graduate courses and industry a survey listing 48 different KSA’s was provided to both industrial members and engineering faculty. The survey allowed the industry panel to state what KSA’s were important and what KSA’s they thought Universities already do a good job of teaching to graduate students. The initial results showed that the industry panel thought 37.5% of the KSA’s were important and lacking in current graduate education. That means 63.5% of the KSA’s were either not important or that universities already do a good job of teaching those KSA’s. However, engineering faculty said 58.33% of the KSA’s were needed and not currently taught. This shows a strong discrepancy between what Professors think and what industry consider necessary KSA’s. The KSA topics were divided into categories and the ones with the largest discrepancy between faculty and industry were essential skills and statistics. The results of this study will be beneficial to other programs that wish to provide similar experiences for their graduate students. 
    more » « less
  3. Virtual reality (VR) has been widely used for education and affords embodied learning experiences. Here we describe: Scale Worlds (SW), an immersive virtual environment to allow users to shrink or grow by powers of ten (10X) and experience entities from molecular to astronomical levels; and students’ impressions and outcomes from experiencing SW in a CAVE (Figure 1) during experiential summer outreach sessions. Data collected from post-visit surveys of 69 students, and field observations, revealed that VR technologies: enabled interactive learning experiences; encouraged active engagement and discussions among participating students; enhanced the understanding of size and scale; and increased interest in STEM careers. 
    more » « less
  4. Virtual reality offers vast possibilities to enhance the conventional approach for delivering engineering education. The introduction of virtual reality technology into teaching can improve the undergraduate mechanical engineering curriculum by supplementing the traditional learning experience with outside-the-classroom materials. The Center for Aviation and Automotive Technological Education using Virtual E-Schools (CA2VES), in collaboration with the Clemson University Center for Workforce Development (CUCWD), has developed a comprehensive virtual reality-based learning system. The available e-learning materials include eBooks, mini-video lectures, three-dimensional virtual reality technologies, and online assessments. Select VR-based materials were introduced to students in a sophomore level mechanical engineering laboratory course via fourteen online course modules during a four-semester period. To evaluate the material, a comparison of student performance with and without the material, along with instructor feedback, was completed. Feedback from the instructor and the teaching assistant revealed that the material was effective in improving the laboratory safety and boosted student’s confidence in handling engineering tools. 
    more » « less
  5. Virtual reality (VR) has gained increased implementation in higher education with reported benefits of enhancing student learning and engagement. However, there is a lack of qualitative research devoted to understanding the prolonged use of VR, and the social process of how instructor’s and students’ behavior and perception toward VR develop and evolve. This research conducted an ethnographic case study of a semester-long VR-integrated neuroanatomy course. By triangulating data from classroom observation, student focus group, and faculty interview, the research results suggested that instructional design of VR was heavily influenced by the instructor’s personal and educational backgrounds, and their technology self-efficacy. The quality of instruction affected students’ perceived value of VR activities and dictated their lived experience in the VR-integrated course. 
    more » « less