skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits
A two-mode squeezed microresonator-based frequency comb is demonstrated with CMOS-compatible silicon nitride integrated photonic circuits. Seventy quantum modes, in a span of 1.3 THz, are generated in an integrated Kerr microresonator at telecommunication wavelengths.  more » « less
Award ID(s):
2238096 1842641
PAR ID:
10489119
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optica
Date Published:
Journal Name:
Optica
Volume:
10
Issue:
8
ISSN:
2334-2536
Page Range / eLocation ID:
1100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soliton microcombs have attracted considerable research interest due to their unique properties. Being able to directly access the single-soliton state in a Kerr microresonator simplifies the device operation and may inspire new applications. However, the general conditions leading to such operations are not well understood. In this work, we aim to elucidate the key factors enabling the direct access of the single-soliton state in a Kerr microresonator by combining the experimental results in an integrated silicon carbide platform and a comprehensive analysis based on the normalized Lugiato-Lefever equation. A general criterion linking the Kerr nonlinearity, dispersion, and thermo-optic properties has been derived, which is applicable to Kerr microresonators with varied materials, sizes, optical quality factors, and dispersion. 
    more » « less
  2. Kerr-microresonator frequency combs in integrated photonics waveguides are promising technologies for next-generation positioning, navigation, and timing applications, with advantages that include platforms that are mass-producible and CMOS-compatible and spectra that are phase-coherent and octave-spanning. Fundamental thermal noise in the resonator material typically limits the timing and frequency stability of a microcomb. The small optical mode volume of the microresonators exaggerates this effect, as it both increases the magnitude and shortens the timescale of thermodynamic fluctuations. In this work, we investigate thermal instability in silicon nitride microring resonators as well as techniques for reducing their effects on the microcomb light. We characterize the time-dependent thermal response in silicon nitride microring resonators through experimental measurements and finite element method simulations. Through fast control of the pump laser frequency, we reduce thermal recoil due to heating. Finally, we demonstrate the utility of a coupled microresonator system with tunable mode interactions to increase the stability of a soliton against thermal shifts. 
    more » « less
  3. Microresonator Kerr optical frequency combs currently constitute a well-established research area in integrated, nonlinear, and quantum photonics. These systems have found a plethora of technological applications, while serving as an excellent platform to investigate fundamental scientific topics such as light–matter interactions, pattern formation in driven-dissipative systems, or entangled twin-photon generation. We here provide a brief overview of the topic, highlight some of the most recent advances, and discuss a few of the main challenges ahead in this field. 
    more » « less
  4. Many uses of lasers place the highest importance on access to specific wavelength bands. For example, mobilizing optical-atomic clocks for a leap in sensing requires compact lasers at frequencies spread across the visible and near-infrared. Integrated photonics enables high-performance, scalable laser platforms. However, customizing laser-gain media to support wholly new bands is challenging and often prohibitively mismatched in scalability to early quantum-based sensing and information systems. Here, we demonstrate a tantalum pentoxide microresonator optical-parametric oscillator (OPO) that converts a pump laser to an output wave within a frequency span exceeding an octave. We control phase matching for oscillation by nanopatterning the microresonator to open a photonic-crystal bandgap on the mode of the pump laser. The photonic crystal splits only the pump mode and preserves the broader mode structure of the resonator, thus affording a single parameter to control output waves across the octave span using a nearly fixed frequency pump laser. We also demonstrate tuning the oscillator in free-spectral-range steps, more finely with temperature, and minimal additive frequency noise of the laser-conversion process. Our work shows that nanophotonic structures offer control of laser conversion in microresonators, bridging phase-matching of nonlinear optics and application requirements for laser designs. 
    more » « less
  5. Abstract The optical microresonator-based frequency comb (microcomb) provides a versatile platform for nonlinear physics studies and has wide applications ranging from metrology to spectroscopy. The deterministic quantum regime is an unexplored aspect of microcombs, in which unconditional entanglements among hundreds of equidistant frequency modes can serve as critical ingredients to scalable universal quantum computing and quantum networking. Here, we demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip. 40 continuous-variable quantum modes, in the form of 20 simultaneously two-mode squeezed comb pairs, are observed within 1 THz optical span at telecommunication wavelengths. A maximum raw squeezing of 1.6 dB is attained. A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs. Our demonstration offers the possibility to leverage deterministically generated, frequency multiplexed quantum states and integrated photonics to open up new avenues in fields of spectroscopy, quantum metrology, and scalable, continuous-variable-based quantum information processing. 
    more » « less