Abstract Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs.
more »
« less
A squeezed quantum microcomb on a chip
Abstract The optical microresonator-based frequency comb (microcomb) provides a versatile platform for nonlinear physics studies and has wide applications ranging from metrology to spectroscopy. The deterministic quantum regime is an unexplored aspect of microcombs, in which unconditional entanglements among hundreds of equidistant frequency modes can serve as critical ingredients to scalable universal quantum computing and quantum networking. Here, we demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip. 40 continuous-variable quantum modes, in the form of 20 simultaneously two-mode squeezed comb pairs, are observed within 1 THz optical span at telecommunication wavelengths. A maximum raw squeezing of 1.6 dB is attained. A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs. Our demonstration offers the possibility to leverage deterministically generated, frequency multiplexed quantum states and integrated photonics to open up new avenues in fields of spectroscopy, quantum metrology, and scalable, continuous-variable-based quantum information processing.
more »
« less
- PAR ID:
- 10310405
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dissipative Kerr soliton microcombs in microresonators have enabled fundamental advances in chip-scale precision metrology, communication, spectroscopy, and parallel signal processing. Here we demonstrate polarization-diverse soliton transitions and deterministic switching dynamics of a self-stabilized microcomb in a strongly-coupled dispersion-managed microresonator driven with a single pump laser. The switching dynamics are induced by the differential thermorefractivity between coupled transverse-magnetic and transverse-electric supermodes during the forward-backward pump detunings. The achieved large soliton existence range and deterministic transitions benefit from the switching dynamics, leading to the cross-polarized soliton microcomb formation when driven in the transverse-magnetic supermode of the single resonator. Secondly, we demonstrate two distinct polarization-diverse soliton formation routes – arising from chaotic or periodically-modulated waveforms via pump power selection. Thirdly, to observe the cross-polarized supermode transition dynamics, we develop a parametric temporal magnifier with picosecond resolution, MHz frame rate and sub-ns temporal windows. We construct picosecond temporal transition portraits in 100-ns recording length of the strongly-coupled solitons, mapping the transitions from multiple soliton molecular states to singlet solitons. This study underpins polarization-diverse soliton microcombs for chip-scale ultrashort pulse generation, supporting applications in frequency and precision metrology, communications, spectroscopy and information processing.more » « less
-
Abstract Kerr microcombs have drawn substantial interest as mass-manufacturable, compact alternatives to bulk frequency combs. This could enable the deployment of many comb-reliant applications previously confined to laboratories. Particularly enticing is the prospect of microcombs performing optical frequency division in compact optical atomic clocks. Unfortunately, it is difficult to meet the self-referencing requirement of microcombs in these systems owing to the approximately terahertz repetition rates typically required for octave-spanning comb generation. In addition, it is challenging to spectrally engineer a microcomb system to align a comb mode with an atomic clock transition with a sufficient signal-to-noise ratio. Here we adopt a Vernier dual-microcomb scheme for optical frequency division of a stabilized ultranarrow-linewidth continuous-wave laser at 871 nm to an ~235 MHz output frequency. This scheme enables shifting an ultrahigh-frequency (~100 GHz) carrier-envelope offset beat down to frequencies where detection is possible and simultaneously placing a comb line close to the 871 nm laser—tuned so that, if frequency doubled, it would fall close to the clock transition in171Yb+. Our dual-comb system can potentially combine with an integrated ion trap towards future chip-scale optical atomic clocks.more » « less
-
Abstract Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 μs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.more » « less
-
Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands. Here, we demonstrate the formation and spectral control of normal-dispersion dark soliton microcombs at 1064 nm. We generate 200 GHz repetition rate microcombs by inducing a photonic bandgap of the microresonator mode for the pump laser with a photonic crystal. We perform the experiments with normal-dispersion microresonators made from Ta2O5 and explore unique soliton pulse shapes and operating behaviors. By adjusting the resonator dispersion through its nanostructured geometry, we demonstrate control over the spectral bandwidth of these combs, and we employ numerical modeling to understand their existence range. Our results highlight how photonic design enables microcomb spectra tailoring across wide wavelength ranges, offering potential in bioimaging, spectroscopy, and photonic-atomic quantum technologies.more » « less
An official website of the United States government

