skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biased Electropermanent Magnetic Docking Design for Neutral Buoyancy UAV Deployment
This paper introduces a novel approach to enhance the docking mechanism of sensor packages deployed on bridges using unmanned aerial vehicles (UAVs). The current electropermanent magnet (EPM) system faces challenges in achieving efficient and stable docking due to factors such as airflow, GPS stabilization, and the time required for EPM activation. To address these issues, a biased EPM design is proposed, utilizing additional permanent magnets to achieve neutral buoyancy during UAV deployment. This design optimally balances the weight of the drone and sensor package, providing advantages such as improved stability against external factors and reduced pilot fatigue. Experimental results demonstrate the feasibility of the proposed design, indicating enhanced hold force and an extended range for efficient docking.  more » « less
Award ID(s):
2237696 2152896
PAR ID:
10489196
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Aeronautics and Astronautics
Date Published:
Journal Name:
AIAA SCITECH 2024 Forum.
ISBN:
978-1-62410-711-5
Format(s):
Medium: X
Location:
Orlando, FL
Sponsoring Org:
National Science Foundation
More Like this
  1. Electropermanent magnetic (EPM) valves consist of two permanent magnets, one with high coercivity and one with relatively low coercivity, which are able to rapidly redirect the flux within a magnetic circuit. When combined with magnetorheological (MR) fluid, they provide the ability to rapidly switch flow in a hydraulic circuit on or off. EPM valves contain no moving parts and draw no power except when changing state. These facts, along with their scalability, make them an attractive option for distributed flow control in small hydraulic systems. Current examples of EPM valves are often restricted to relatively low-pressure or low-flow operation. Miniaturization of small-scale hydraulic robots, both soft and rigid, is limited by the availability of sufficiently lightweight, compact, and efficient components which are capable of directing fluid at pressures greater than 700 kPa. This research proposes an EPM valve which leverages the magnetic properties of MR fluid to channel magnetic flux through the fluid. To evaluate the proposed geometry, an exploratory prototype was constructed and evaluated using a test-bench capable of evaluating the valve as a flow resistance. Simulations were conducted to evaluate the design and validate the use of simulation for future design iteration. To be of use in robotic systems, this valve needs to be capable of rapidly switching relatively high pressures while maintaining a highly compact and easily manufactured form factor. Due to its size and low power consumption, it is suitable for distributed hydraulic control in miniature systems such as hydraulically-actuated robots, including soft robots. 
    more » « less
  2. Abstract Physically soft magnetic materials (PSMMs) represent an emerging class of materials that can change shape or rheology in response to an external magnetic field. However, until now, no studies have investigated using an electropermanent magnet (EPM) and magnetic repulsion to magnetically deform PSMMs. Such capabilities would enable the ability to deform PSMMs without the need for continuous electrical input and produce PSMM film deformation without an air gap, as would be required with magnetic attraction. To address this, we introduce a PSMM-EPM architecture in which the shape of a soft deformable thin film is controlled by switching between bistable on/off states of the EPM circuit. We characterized the deflection of a PSMM thin film when placed at controlled distances normal to the surface of the EPM and compared its response for cases when the EPM is in the ‘on’ and ‘off’ states. This work is the first to demonstrate a magnetically repelled soft deformable thin film that achieves two electronically-controlled modes of deformation through the on and off states of an EPM. This work has the potential to advance the development of new magneto-responsive soft materials and systems. 
    more » « less
  3. Predicting the binding structure of a small molecule ligand to a protein -- a task known as molecular docking -- is critical to drug design. Recent deep learning methods that treat docking as a regression problem have decreased runtime compared to traditional search-based methods but have yet to offer substantial improvements in accuracy. We instead frame molecular docking as a generative modeling problem and develop DiffDock, a diffusion generative model over the non-Euclidean manifold of ligand poses. To do so, we map this manifold to the product space of the degrees of freedom (translational, rotational, and torsional) involved in docking and develop an efficient diffusion process on this space. Empirically, DiffDock obtains a 38% top-1 success rate (RMSD<2A) on PDBBind, significantly outperforming the previous state-of-the-art of traditional docking (23%) and deep learning (20%) methods. Moreover, while previous methods are not able to dock on computationally folded structures (maximum accuracy 10.4%), DiffDock maintains significantly higher precision (21.7%). Finally, DiffDock has fast inference times and provides confidence estimates with high selective accuracy. 
    more » « less
  4. Hughes, Kelly T (Ed.)
    ABSTRACT New approaches for combating microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen,Salmonella entericaserotype Typhimurium (S. Typhimurium), in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy. Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome,acrABis required for growth, the EPM analogs are bacteriostatic, and the EPM analogs increase the potency of antibiotics. These data suggest that under macrophage-like conditions, the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics. IMPORTANCEBacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics. 
    more » « less
  5. Genomics is the critical key to enabling precision medicine, ensuring global food security and enforcing wildlife conservation. The massive genomic data produced by various genome sequencing technologies presents a significant challenge for genome analysis. Because of errors from sequencing machines and genetic variations, approximate pattern matching (APM) is a must for practical genome analysis. Recent work proposes FPGA, ASIC and even process-in-memory-based accelerators to boost the APM throughput by accelerating dynamic-programming-based algorithms (e.g., Smith-Waterman). However, existing accelerators lack the efficient hardware acceleration for the exact pattern matching (EPM) that is an even more critical and essential function widely used in almost every step of genome analysis including assembly, alignment, annotation and compression. State-of-the-art genome analysis adopts the FM-Index that augments the space-efficient BWT with additional data structures permitting fast EPM operations. But the FM-Index is notorious for poor spatial locality and massive random memory accesses. In this paper, we propose a ReRAM-based process-in-memory architecture, FindeR, to enhance the FM-Index EPM search throughput in genomic sequences. We build a reliable and energy-efficient Hamming distance unit to accelerate the computing kernel of FM-Index search using commodity ReRAM chips without introducing extra CMOS logic. We further architect a full-fledged FM-Index search pipeline and improve its search throughput by lightweight scheduling on the NVDIMM. We also create a system library for programmers to invoke FindeR to perform EPMs in genome analysis. Compared to state-of-the-art accelerators, FindeR improves the FM-Index search throughput by 83% ~ 30K× and throughput per Watt by 3.5×~42.5K×. 
    more » « less