skip to main content

Search for: All records

Award ID contains: 2237696

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper introduces a novel approach to enhance the docking mechanism of sensor packages deployed on bridges using unmanned aerial vehicles (UAVs). The current electropermanent magnet (EPM) system faces challenges in achieving efficient and stable docking due to factors such as airflow, GPS stabilization, and the time required for EPM activation. To address these issues, a biased EPM design is proposed, utilizing additional permanent magnets to achieve neutral buoyancy during UAV deployment. This design optimally balances the weight of the drone and sensor package, providing advantages such as improved stability against external factors and reduced pilot fatigue. Experimental results demonstrate the feasibility of the proposed design, indicating enhanced hold force and an extended range for efficient docking. 
    more » « less
  2. Electric Aircraft have the potential to revolutionize short-distance air travel with lower operating costs and simplified maintenance. However, due to the long lead-time associated with procuring batteries and the maintenance challenges of replacing and repairing batteries in electric aircraft, there are still unanswered questions related to the true long-term operating costs of electric aircraft. This research examines using a load-sharing system in electric aircraft to optimally tune battery degradation in a multi-battery system such that the battery life of a single battery is extended. The active optimization of energy drawn from multiple battery packs means that each battery pack reaches its optimal replacement point at the same time; thereby simplifying the maintenance procedure and reducing cost. This work uses lithium iron phosphate batteries experimentally characterized and simulated in OpenModelica for a flight load profile. Adaptive agents control the load on the battery according to factors such as state of charge, and state of health, to respond to potential faults. The findings in this work show the potential for adaptive agents to selectively draw more power from a healthy battery to extend the lifespan of a degraded battery such that the remaining useful life of both batteries reaches zero at the same time. Simulations show that dual battery replacement can be facilitated using the proposed method when the in-service battery has a remaining useful life of greater than 0.5; assuming that the replacement battery it is paired with has a remaining useful life of 1.0. Limitations of the proposed method are discussed within this work. 
    more » « less
    Free, publicly-accessible full text available January 4, 2025
  3. In high-rate structural health monitoring, it is crucial to quickly and accurately assess the current state of a component under dynamic loads. State information is needed to make informed decisions about timely interventions to prevent damage and extend the structure’s life. In previous studies, a dynamic reproduction of projectiles in ballistic environments (DROPBEAR) testbed was used to evaluate the accuracy of state estimation techniques through dynamic analysis. This paper extends previous research by incorporating the local eigenvalue modification procedure (LEMP) and data fusion techniques to create a more robust state estimate using optimal sampling methodologies. The process of estimating the state involves taking a measured frequency response of the structure, proposing frequency response profiles, and accepting the most similar profile as the new mean for the position estimate distribution. Utilizing LEMP allows for a faster approximation of the proposed model with linear time complexity, making it suitable for 2D or sequential damage cases. The current study focuses on two proposed sampling methodology refinements: distilling the selection of candidate test models from the position distribution and applying a Kalman filter after the distribution update to find the mean. Both refinements were effective in improving the position estimate and the structural state accuracy, as shown by the time response assurance criterion and the signal-to-noise ratio with up to 17% improvement. These two metrics demonstrate the benefits of incorporating data fusion techniques into the high-rate state identification process. 
    more » « less