skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leibniz International Proceedings in Informatics (LIPIcs):26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)
Extended resolution shows that auxiliary variables are very powerful in theory. However, attempts to exploit this potential in practice have had limited success. One reasonably effective method in this regard is bounded variable addition (BVA), which automatically reencodes formulas by introducing new variables and eliminating clauses, often significantly reducing formula size. We find motivating examples suggesting that the performance improvement caused by BVA stems not only from this size reduction but also from the introduction of effective auxiliary variables. Analyzing specific packing-coloring instances, we discover that BVA is fragile with respect to formula randomization, relying on variable order to break ties. With this understanding, we augment BVA with a heuristic for breaking ties in a structured way. We evaluate our new preprocessing technique, Structured BVA (SBVA), on more than 29 000 formulas from previous SAT competitions and show that it is robust to randomization. In a simulated competition setting, our implementation outperforms BVA on both randomized and original formulas, and appears to be well-suited for certain families of formulas.  more » « less
Award ID(s):
2015445
PAR ID:
10489211
Author(s) / Creator(s):
; ;
Editor(s):
Mahajan, Meena; Slivovsky, Friedrich
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Subject(s) / Keyword(s):
Reencoding Auxiliary Variables Extended Resolution Theory of computation → Logic and verification
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Berg, Jeremias; Nordström, Jakob (Ed.)
    We present a lightweight reencoding technique that augments propositional formulas containing implicit or explicit exactly-one constraints with auxiliary variables derived from the order encoding. Our approach is based on the observation that many formulas contain clauses where each literal appears only in that clause, and that these unique literal clauses can be replaced by the corresponding sequential counter encoding of exactly-one constraints, which introduces the same variables as the order encoding. We implemented the reencoding in the state-of-the-art SAT solver CaDiCaL with support for proof logging and solution reconstruction. Experiments on SAT Competition benchmarks demonstrate that our technique enables solving dozens of additional formulas. We found that shuffling a formula before reencoding harms performance. To mitigate this issue, we introduce a method that sorts literals within clauses based on the formula structure before applying our reencoding. The same technique also predicts whether reencoding is likely to yield improvements. 
    more » « less
  2. Tauman Kalai, Yael (Ed.)
    We study the complexity of proof systems augmenting resolution with inference rules that allow, given a formula Γ in conjunctive normal form, deriving clauses that are not necessarily logically implied by Γ but whose addition to Γ preserves satisfiability. When the derived clauses are allowed to introduce variables not occurring in Γ, the systems we consider become equivalent to extended resolution. We are concerned with the versions of these systems without new variables. They are called BC⁻, RAT⁻, SBC⁻, and GER⁻, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked clauses, and generalized extended resolution. Each of these systems formalizes some restricted version of the ability to make assumptions that hold --- without loss of generality --- which is commonly used informally to simplify or shorten proofs. Except for SBC⁻, these systems are known to be exponentially weaker than extended resolution. They are, however, all equivalent to it under a relaxed notion of simulation that allows the translation of the formula along with the proof when moving between proof systems. By taking advantage of this fact, we construct formulas that separate RAT⁻ from GER⁻ and vice versa. With the same strategy, we also separate SBC⁻ from RAT⁻. Additionally, we give polynomial-size SBC⁻ proofs of the pigeonhole principle, which separates SBC⁻ from GER⁻ by a previously known lower bound. These results also separate the three systems from BC⁻ since they all simulate it. We thus give an almost complete picture of their relative strengths. 
    more » « less
  3. Regular resolution is a refinement of the resolution proof system requiring that no variable be resolved on more than once along any path in the proof. It is known that there exist sequences of formulas that require exponential-size proofs in regular resolution while admitting polynomial-size proofs in resolution. Thus, with respect to the usual notion of simulation, regular resolution is separated from resolution. An alternative, and weaker, notion for comparing proof systems is that of an “effective simulation,” which allows the translation of the formula along with the proof when moving between proof systems. We prove that regular resolution is equivalent to resolution under effective simulations. As a corollary, we recover in a black-box fashion a recent result on the hardness of automating regular resolution. 
    more » « less
  4. The effectiveness of satisfiability solvers strongly depends on the quality of the encoding of a given problem into conjunctive normal form. Cardinality constraints are prevalent in numerous problems, prompting the development and study of various types of encoding. We present a novel approach to optimizing cardinality constraint encodings by exploring the impact of literal orderings within the constraints. By strategically placing related literals nearby each other, the encoding generates auxiliary variables in a hierarchical structure, enabling the solver to reason more abstractly about groups of related literals. Unlike conventional metrics such as formula size or propagation strength, our method leverages structural properties of the formula to redefine the roles of auxiliary variables to enhance the solver's learning capabilities. The experimental evaluation on benchmarks from the maximum satisfiability competition demonstrates that literal orderings can be more influential than the choice of the encoding type. Our literal ordering technique improves solver performance across various encoding techniques, underscoring the robustness of our approach. 
    more » « less
  5. The existence of external (“side”) semantic knowledge has been shown to result in more expressive computational event models. To enable the use of side information that may be noisy or missing, we propose a semi-supervised information bottleneck-based discrete latent variable model. We reparameterize the model’s discrete variables with auxiliary continuous latent variables and a light-weight hierarchical structure. Our model is learned to minimize the mutual information between the observed data and optional side knowledge that is not already captured by the new, auxiliary variables. We theoretically show that our approach generalizes past approaches, and perform an empirical case study of our approach on event modeling. We corroborate our theoretical results with strong empirical experiments, showing that the proposed method outperforms previous proposed approaches on multiple datasets. 
    more » « less