skip to main content

Title: Double-Split Rectangular Dual-Ring DNG Metamaterial for 5G Millimeter Wave Applications

This article presents the design and analysis of a low profile double-negative (DNG) metamaterial unit structure for 5G mmWave (millimeter wave) applications. The structure, comprised of double-slotted rectangular ring patches, experiences the peak current value near the magnetic resonance, causing the metamaterial to resonate at 28 GHz where it exhibits negative effective permittivity and permeability. The 3.05 mm × 2.85 mm compact structure is designed over a substrate Rogers RT/Duroid 5880 to attain better effective medium ratio (EMR) in the 5G frequency range (27.1–29.2 GHz). A rigorous parametric study is conducted to obtain the proposed design. Full-wave electromagnetic simulation software tools CST and HFSS are used to generate the scattering parameters for the analysis. The Nicolson–Ross–Wier method is used to observe the negative effective permittivity and permeability. In addition, different output quantities, e.g., surface current and electric and magnetic field distribution, are investigated. The structure is further tested with 1 × 2, 2 × 2, and 4 × 4 arrays, where the results show adequate agreement to be considered for 5G mmWave applications.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, a metamaterial-based LTCC compressed Luneburg lens was designed, manufactured and measured. The lens was designed at 60 GHz to utilize the unlicensed mm-wave spectrum available for short-range high-capacity wireless communication networks. The transformation optics method was applied to ensure the compression of the Luneburg lens antenna and thus maintain a low-profile structure. The two different types of unit cells for low and high permittivity regions were considered. The parametric study of the effect of compression on lens performance was presented. The antenna is implemented with a standard high-permittivity LTCC process, and details of the manufacturing process for the metamaterial lens are discussed. The low-profile lens is thinner than 2 mm and measures 19 mm in diameter. A size reduction of 63.6% in comparison with a spherical lens was achieved. The near-field to far-field mm-wave measurement technique is presented, and the measurement results show a peak antenna gain of 16 dBi at 60 GHz and a beam-scanning capacity with 1 dB scan loss within a 50° field of view. 
    more » « less
  2. Abstract

    Highly effective electromagnetic (EM) wave absorber materials with strong reflection loss (RL) and a wide absorption bandwidth (EBW) in gigahertz (GHz) frequencies are crucial for advanced wireless applications and portable electronics. Traditional microwave absorbers lack magnetic loss and struggle with impedance matching, while ferrites are stable, exhibit excellent magnetic and dielectric losses, and offer better impedance matching. However, achieving the desired EBW in ferrites remains a challenge, necessitating further composition design. In this study, impedance matching is successfully enhanced and EBW in Ni–Zn ferrite is broadened by successive doping with Mn and Co , without incorporation of any polymer filler. It is found that Ni0.4Co0.1Zn0.5Fe1.9Mn0.1O4material exhibits exceptional EM wave absorption, with a maximum RL of −48.7 dB. It also featured a significant EBW of 10.8 GHz, maintaining a 90% absorption rate (RL < −10 dB) for a thickness of 4.5 mm. These outstanding properties result from substantial magnetic losses and favorable impedance matching. These findings represent a significant step forward in the development of microwave absorber materials, addressing EM wave pollution concerns within GHz frequencies, including the frequency band used in popular 5G technology.

    more » « less
  3. This paper reports our in-depth measurement study of 5G experience with three US operators (AT&T, Verizon and T-Mobile). We not only quantitively characterize 5G coverage, availability and performance (over both mmWave and Sub-6GHz bands), but also identify several performance issues and analyze their root causes. We see that real 5G experience is not that satisfactory as anticipated. It is mainly because faster 5G is not used as it can and should. We have several surprising findings: Despite huge speed potentials (say, up to several hundreds of Mbps), more than half are not realized in practice; Such underutilization is mainly stemmed from current practice and policies that manage radio resource in a performance-oblivious manner; 5G is even less used where 5G is co-deployed over both mmWave and Sub-6GHz bands; Transiently missing 5G is not uncommon and its negative impacts last much longer. Inspired by our findings, we design a patch solution called 5GBoost to fix the problems identified in legacy 5G operations. Our preliminary evaluation validates its effectiveness to realize more 5G potentials. 
    more » « less
  4. We provide a platform to examine the effect of inclusion geometry on three-dimensional metamaterial crystals to tune frequency-dependent effective properties for control of leading order dispersive behaviour. The crystal is non-magnetic and made from all dielectric components. The design provides novel dispersive properties using subwavelength resonances controlled by the geometry of the media. We numerically calculate the effective tensors of the metamaterial to identify frequency intervals where the metamaterial exhibits band gaps as well as intervals of normal dispersion and double negative dispersion. The frequency intervals can be explicitly controlled by adjusting the geometry and placement of the dielectric inclusions within the period cell of the crystal. 
    more » « less
  5. Abstract

    In this paper, a slotted circular ultra‐wideband (UWB) microstrip patch antenna is reported. The antenna is designed, simulated, fabricated, and tested experimentally. The antenna operates over a 4.0‐40 GHz (164% fractional bandwidth) range with a return loss of 10 dB and voltage standing wave ratio (VSWR) < 2. The designed monopole antenna is of dimensions 28.1 mm × 17.1 mm with an electrical size of 0.37 λ × 0.23 λ at 4 GHz frequency. The antenna is fabricated on FR‐4 substrate with a dielectric permittivity of 4.4, loss tangent of 0.02, and a thickness of 1.4 mm. The designed antenna exhibits nearly omnidirectional radiation patterns over the entire impedance bandwidth with more than 2.8 dB peak gain for the entire frequency range and 75% of average radiation efficiency. The presented antenna can be used in UWB communications along with C‐band, X‐band, Ku‐band, K‐band, Ka‐band, WLAN, and future wireless applications.

    more » « less