We develop a theory of linear isoperimetric inequalities for graphs on surfaces and apply it to coloring problems, as follows. Let $ G$ be a graph embedded in a fixed surface $$ \Sigma $$ of genus $ g$ and let $$ L=(L(v):v\in V(G))$$ be a collection of lists such that either each list has size at least five, or each list has size at least four and $ G$ is triangle-free, or each list has size at least three and $ G$ has no cycle of length four or less. An $ L$-coloring of $ G$ is a mapping $$ \phi $$ with domain $ V(G)$ such that $$ \phi (v)\in L(v)$$ for every $$ v\in V(G)$$ and $$ \phi (v)\ne \phi (u)$$ for every pair of adjacent vertices $$ u,v\in V(G)$$. We prove if every non-null-homotopic cycle in $ G$ has length $$ \Omega (\log g)$$, then $ G$ has an $ L$-coloring, if $ G$ does not have an $ L$-coloring, but every proper subgraph does (``$ L$-critical graph''), then $$ \vert V(G)\vert=O(g)$$, if every non-null-homotopic cycle in $ G$ has length $$ \Omega (g)$$, and a set $$ X\subseteq V(G)$$ of vertices that are pairwise at distance $$ \Omega (1)$$ is precolored from the corresponding lists, then the precoloring extends to an $ L$-coloring of $ G$, if every non-null-homotopic cycle in $ G$ has length $$ \Omega (g)$$, and the graph $ G$ is allowed to have crossings, but every two crossings are at distance $$ \Omega (1)$$, then $ G$ has an $ L$-coloring, if $ G$ has at least one $ L$-coloring, then it has at least $$ 2^{\Omega (\vert V(G)\vert)}$$ distinct $ L$-colorings. We show that the above assertions are consequences of certain isoperimetric inequalities satisfied by $ L$-critical graphs, and we study the structure of families of embedded graphs that satisfy those inequalities. It follows that the above assertions hold for other coloring problems, as long as the corresponding critical graphs satisfy the same inequalities.
more »
« less
Toward Optimal Radio Colorings of Hypercubes via SAT-solving
Radio 2-colorings of graphs are a generalization of vertex colorings motivated by the problem of assigning frequency channels in radio networks. In a radio 2-coloring of a graph, vertices are assigned integer colors so that the color of two vertices u and v differ by at least 2 if u and v are neighbors, and by at least 1 if u and v have a common neighbor. Our work improves the best-known bounds for optimal radio 2-colorings of small hypercube graphs, a combinatorial problem that has received significant attention in the past. We do so by using automated reasoning techniques such as symmetry breaking and Cube and Conquer, obtaining that for n = 7 and n = 8, the coding-theory upper bounds of Whittlesey et al. (1995) are not tight. Moreover, we prove the answer for n = 7 to be either 12 or 13, thus making a substantial step towards answering an open problem by Knuth (2015). Finally, we include several combinatorial observations that might be useful for further progress, while also arguing that fully determining the answer for n = 7 will require new techniques.
more »
« less
- Award ID(s):
- 2015445
- PAR ID:
- 10489327
- Publisher / Repository:
- EasyChair
- Date Published:
- Page Range / eLocation ID:
- 386-404
- Format(s):
- Medium: X
- Location:
- Manizales, Colombia
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)It is unlikely that the discrete Fréchet distance between two curves of length n can be computed in strictly subquadratic time. We thus consider the setting where one of the curves, P, is known in advance. In particular, we wish to construct data structures (distance oracles) of near-linear size that support efficient distance queries with respect to P in sublinear time. Since there is evidence that this is impossible for query curves of length Θ(n^α), for any α > 0, we focus on query curves of (small) constant length, for which we are able to devise distance oracles with the desired bounds. We extend our tools to handle subcurves of the given curve, and even arbitrary vertex-to-vertex subcurves of a given geometric tree. That is, we construct an oracle that can quickly compute the distance between a short polygonal path (the query) and a path in the preprocessed tree between two query-specified vertices. Moreover, we define a new family of geometric graphs, t-local graphs (which strictly contains the family of geometric spanners with constant stretch), for which a similar oracle exists: we can preprocess a graph G in the family, so that, given a query segment and a pair u,v of vertices in G, one can quickly compute the smallest discrete Fréchet distance between the segment and any (u,v)-path in G. The answer is exact, if t = 1, and approximate if t > 1.more » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)The min-diameter of a directed graph G is a measure of the largest distance between nodes. It is equal to the maximum min-distance d_{min}(u,v) across all pairs u,v ∈ V(G), where d_{min}(u,v) = min(d(u,v), d(v,u)). Min-diameter approximation in directed graphs has attracted attention recently as an offshoot of the classical and well-studied diameter approximation problem. Our work provides a 3/2-approximation algorithm for min-diameter in DAGs running in time O(m^{1.426} n^{0.288}), and a faster almost-3/2-approximation variant which runs in time O(m^{0.713} n). (An almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor of α plus constant additive error.) This is the first known algorithm to solve 3/2-approximation for min-diameter in sparse DAGs in truly subquadratic time O(m^{2-ε}) for ε > 0; previously only a 2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016], a better than 3/2-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time. Our work also presents the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic time, and that in general graphs, an approximation within a factor below 5/2 is similarly out of reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime Õ(min(m^{4/3} n^{1/3}, m^{1/2} n^{3/2})).more » « less
-
Gortz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J.; Herman, Grzegorz (Ed.)Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In directed graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since d(u,v) may not be the same as d(v,u), there are multiple ways to define the problem, the two most natural being the (one-way) diameter (max_(u,v) d(u,v)) and the roundtrip diameter (max_{u,v} d(u,v)+d(v,u)). In this paper we make progress on the outstanding open question for each of them. - We design the first algorithm for diameter in sparse directed graphs to achieve n^{1.5-ε} time with an approximation factor better than 2. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. - We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes k-Cycle hypothesis, and any (2-ε)-approximation would imply a breakthrough algorithm for approximate 𝓁_∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH.more » « less
-
We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3-uniform hypergraph without isolated vertex. Suppose that $$H$$ is a 3-uniform hypergraph whose order $$n$$ is sufficiently large and divisible by $$3$$. If $$H$$ contains no isolated vertex and $$\deg(u)+\deg(v) > \frac{2}{3}n^2-\frac{8}{3}n+2$$ for any two vertices $$u$$ and $$v$$ that are contained in some edge of $$H$$, then $$H$$ contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different \emph{space barrier} from the one for the corresponding Dirac problem.more » « less
An official website of the United States government

