skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimization with Neural Network Feasibility Surrogates: Formulations and Application to Security-Constrained Optimal Power Flow
In many areas of constrained optimization, representing all possible constraints that give rise to an accurate feasible region can be difficult and computationally prohibitive for online use. Satisfying feasibility constraints becomes more challenging in high-dimensional, non-convex regimes which are common in engineering applications. A prominent example that is explored in the manuscript is the security-constrained optimal power flow (SCOPF) problem, which minimizes power generation costs, while enforcing system feasibility under contingency failures in the transmission network. In its full form, this problem has been modeled as a nonlinear two-stage stochastic programming problem. In this work, we propose a hybrid structure that incorporates and takes advantage of both a high-fidelity physical model and fast machine learning surrogates. Neural network (NN) models have been shown to classify highly non-linear functions and can be trained offline but require large training sets. In this work, we present how model-guided sampling can efficiently create datasets that are highly informative to a NN classifier for non-convex functions. We show how the resultant NN surrogates can be integrated into a non-linear program as smooth, continuous functions to simultaneously optimize the objective function and enforce feasibility using existing non-linear solvers. Overall, this allows us to optimize instances of the SCOPF problem with an order of magnitude CPU improvement over existing methods.  more » « less
Award ID(s):
1944678
PAR ID:
10489335
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Energies
Volume:
16
Issue:
16
ISSN:
1996-1073
Page Range / eLocation ID:
5913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Under the linear regression framework, we study the variable selection problem when the underlying model is assumed to have a small number of nonzero coefficients. Non-convex penalties in speci c forms are well-studied in the literature for sparse estimation. A recent work, Ahn, Pang, and Xin (2017), has pointed out that nearly all existing non-convex penalties can be represented as difference-of-convex (DC) functions, which are the difference of two convex functions, while itself may not be convex. There is a large existing literature on optimization problems when their objectives and/or constraints involve DC functions. Efficient numerical solutions have been proposed. Under the DC framework, directional-stationary (d-stationary) solutions are considered, and they are usually not unique. In this paper, we show that under some mild conditions, a certain subset of d-stationary solutions in an optimization problem (with a DC objective) has some ideal statistical properties: namely, asymptotic estimation consistency, asymptotic model selection consistency, asymptotic efficiency. Our assumptions are either weaker than or comparable with those conditions that have been adopted in other existing works. This work shows that DC is a nice framework to offer a uni ed approach to these existing works where non-convex penalties are involved. Our work bridges the communities of optimization and statistics. 
    more » « less
  2. null; null; null; null; null (Ed.)
    We consider an online optimization problem in which the reward functions are DR-submodular, and in addition to maximizing the total reward, the sequence of decisions must satisfy some convex constraints on average. Specifically, at each round t, upon committing to an action x_t, a DR-submodular utility function f_t and a convex constraint function g_t are revealed, and the goal is to maximize the overall utility while ensuring the average of the constraint functions is non-positive (so constraints are satisfied on average). Such cumulative constraints arise naturally in applications where the average resource consumption is required to remain below a specified threshold. We study this problem under an adversarial model and a stochastic model for the convex constraints, where the functions g_t can vary arbitrarily or according to an i.i.d. process over time. We propose a single algorithm which achieves sub-linear regret (with respect to the time horizon T) as well as sub-linear constraint violation bounds in both settings, without prior knowledge of the regime. Prior works have studied this problem in the special case of linear constraint functions. Our results not only improve upon the existing bounds under linear cumulative constraints, but also give the first sub-linear bounds for general convex long-term constraints. 
    more » « less
  3. This work develops analysis and algorithms for solving a class of bilevel optimization problems where the lower-level (LL) problems have linear constraints. Most of the existing approaches for constrained bilevel problems rely on value function-based approximate reformulations, which suffer from issues such as non-convex and non-differentiable constraints. In contrast, in this work, we develop an implicit gradient-based approach, which is easy to implement, and is suitable for machine learning applications. We first provide an in-depth understanding of the problem, by showing that the implicit objective for such problems is in general non-differentiable. However, if we add some small (linear) perturbation to the LL objective, the resulting implicit objective becomes differentiable almost surely. This key observation opens the door for developing (deterministic and stochastic) gradient-based algorithms similar to the state-of-the-art ones for unconstrained bi-level problems. We show that when the implicit function is assumed to be stronglyconvex, convex, and weakly-convex, the resulting algorithms converge with guaranteed rate. Finally, we experimentally corroborate the theoretical findings and evaluate the performance of the proposed framework on numerical and adversarial learning problems. 
    more » « less
  4. null (Ed.)
    We study the problem of maximizing energy transfer to a load in a DC microgrid while respecting constraints on bus voltages and currents, and accounting for the impact of neighboring constant power loads. Both the objective and dynamics give rise to indefinite quadratic terms, resulting in a non-convex optimization problem. Through change of variables and relaxations we develop a closely related second-order cone program. The problem retains the same feasible set as the original problem but utilizes a linear approximation of the non-convex objective. We demonstrate how this can be used to design approximately optimal charging profiles for periodic pulsed loads in real time. 
    more » « less
  5. We study the problem of maximizing energy transfer to a load in a DC microgrid while respecting constraints on bus voltages and currents, and accounting for the impact of neighboring constant power loads. Both the objective and dynamics give rise to indefinite quadratic terms, resulting in a non-convex optimization problem. Through change of variables and relaxations we develop a closely related second-order cone program. The problem retains the same feasible set as the original problem but utilizes a linear approximation of the non-convex objective. We demonstrate how this can be used to design approximately optimal charging profiles for periodic pulsed loads in real time. 
    more » « less