skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drosophila Adducin facilitates phase separation and function of a conserved spindle orientation complex
Asymmetric cell division (ACD) allows stem cells to generate differentiating progeny while simultaneously maintaining their own pluripotent state. ACD involves coupling mitotic spindle orientation with cortical polarity cues to direct unequal segregation of cell fate determinants. InDrosophilaneural stem cells (neuroblasts; NBs), spindles orient along an apical-basal polarity axis through a conserved complex of Partner of Inscuteable (Pins; human LGN) and Mushroom body defect (Mud; human NuMA). While many details of its function are well known, the molecular mechanics that drive assembly of the cortical Pins/Mud complex remain unclear, particularly with respect to the mutually exclusive Pins complex formed with the apical scaffold protein Inscuteable (Insc). Here we identify Hu li tai shao (Hts; human Adducin) as a direct Mud-binding protein, using an aldolase fold within its head domain (HtsHEAD) to bind a short Mud coiled-coil domain (MudCC) that is adjacent to the Pins-binding domain (MudPBD). Hts is expressed throughout the larval central brain and apically polarizes in mitotic NBs where it is required for Mud-dependent spindle orientation.In vitroanalyses reveal that Pins undergoes liquid-liquid phase separation with Mud, but not with Insc, suggesting a potential molecular basis for differential assembly mechanics between these two competing apical protein complexes. Furthermore, we find that Hts binds an intact Pins/Mud complex, reduces the concentration threshold for its phase separation, and alters the liquid-like property of the resulting phase separated droplets. Domain mapping and mutational analyses implicate critical roles for both multivalent interactions (via MudCColigomerization) and protein disorder (via an intrinsically disordered region in Hts; HtsIDR) in phase separation of the Hts/Mud/Pins complex. Our study identifies a new component of the spindle positioning machinery in NBs and suggests that phase separation of specific protein complexes might regulate ordered assembly within the apical domain to ensure proper signaling output.  more » « less
Award ID(s):
2205405
PAR ID:
10489476
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Cell and Developmental Biology
Volume:
11
ISSN:
2296-634X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The orientation of the mitotic spindle at metaphase determines the placement of the daughter cells. Spindle orientation in animals typically relies on an evolutionarily conserved biological machine comprised of at least four proteins – called Pins, Gαi, Mud, and Dynein in flies – that exerts a pulling force on astral microtubules and reels the spindle into alignment. The canonical model for spindle orientation holds that the direction of pulling is determined by asymmetric placement of this machinery at the cell cortex. In most cell types, this placement is thought to be mediated by Pins, and a substantial body of literature is therefore devoted to identifying polarized cues that govern localized cortical enrichment of Pins. In this study we revisit the canonical model and find that it is incomplete. Spindle orientation in theDrosophilafollicular epithelium and embryonic ectoderm requires not only Pins localization but also direct interaction between Pins and the multifunctional protein Discs large. This requirement can be over‐ridden by interaction with another Pins interacting protein, Inscuteable. 
    more » « less
  2. ABSTRACT The orientation of the mitotic spindle determines the direction of cell division, and therefore contributes to tissue shape and cell fate. Interaction between the multifunctional scaffolding protein Discs large (Dlg) and the canonical spindle orienting factor GPSM2 (called Pins in Drosophila and LGN in vertebrates) has been established in bilaterian models, but its function remains unclear. We used a phylogenetic approach to test whether the interaction is obligate in animals, and in particular whether Pins/LGN/GPSM2 evolved in multicellular organisms as a Dlg-binding protein. We show that Dlg diverged in C. elegans and the syncytial sponge Opsacas minuta and propose that this divergence may correspond with differences in spindle orientation requirements between these organisms and the canonical pathways described in bilaterians. We also demonstrate that Pins/LGN/GPSM2 is present in basal animals, but the established Dlg-interaction site cannot be found in either Placozoa or Porifera. Our results suggest that the interaction between Pins/LGN/GPSM2 and Dlg appeared in Cnidaria, and we therefore speculate that it may have evolved to promote accurate division orientation in the nervous system. This work reveals the evolutionary history of the Pins/LGN/GPSM2-Dlg interaction and suggests new possibilities for its importance in spindle orientation during epithelial and neural tissue development. 
    more » « less
  3. ABSTRACT Plant cells create a plasma membrane‐associated network of microtubules that are nucleated by γ‐tubulin ring complexes primarily through microtubule‐dependent microtubule nucleation (MDMN). This dynamic array organizes into specific patterns in response to developmental and environmental cues to influence primary cell wall construction. The molecular mechanisms directing the creation of cortical microtubule array patterns are largely unknown. The hetero‐octameric AUGMIN complex facilitates mitotic spindle formation by associating γ‐tubulin ring complexes with existing spindle microtubules and creating parallel branched microtubules through MDMN. AUGMIN8, the key linker protein connecting the AUGMIN complex to the parent microtubule, is encoded by a paralogous family of QWRF genes in flowering plants. Members of the QWRF family are distinguished by an unstructured N‐terminal half encoded in a single 5′ exon. We hypothesize that the QWRF paralogs form interchangeable AUGMIN microtubule binding subunits that confer specific roles to the AUGMIN complex in mitotic and non‐mitotic microtubule arrays. We identify four QWRF family members expressed inArabidopsishypocotyl cells and investigate the sites of QWRF interaction with cortical microtubules using transient transformation of fluorescently tagged constructs in the heterologousNicotiana benthamianasystem. We show that full‐length QWRF8 and QWRF4 associate with non‐mitotic, cortical microtubules as distributed puncta where QWRF8 shows evidence for two independent sites of microtubule association. Sequence comparisons and in vivo assay with homologous fragments from QWRF1, 2, 4, and 5 define a shared N‐terminal conserved microtubule association domain. We additionally identify protein regions leading to the formation of microtubule‐associated “QWRF bodies” potentially linked to discontinuous localization on microtubules. We identify the “QWRF” protein motif as a conserved domain associating the AUGMIN8 paralogs with AUGMIN6, part of the larger AUGMIN complex. 
    more » « less
  4. Andrew, D (Ed.)
    Abstract Mud/NuMA/LIN-5 (in flies, vertebrates, and worms) is an evolutionarily conserved protein that regulates the shape and orientation of the mitotic spindle. In vertebrate cells, these functions depend on a C-terminal region called the NuMA-Tip, which (i) mediates interaction with the conserved partner protein LGN (called Pins in flies), (ii) contains a highly conserved subsequence called the NLM, and (ii) binds directly to microtubule ends. Although Mud plays a vital role in Drosophila mitosis, less is known about its structure, particularly at the C-terminus. Through sequence analysis and functional studies, we identify the Mud-Tip region and show that it is encoded by 3 consecutive exons. These exons are spliced out of several Mud isoforms, creating functionally distinct “Tipless” variants. We find that Tipless isoforms are specifically expressed in male and female gametes, where they localize to the nuclear envelope. Although Mud is known to be essential for female fertility, we demonstrate that this function does not require an intact Tip region. We also find that Mud antagonizes the localization of Lamin, a nucleoskeletal protein, in the testis, and uncover an unexpected role for Tipless Mud in promoting male fertility. Our work reveals that while the Mud-Tip is important for Mud function at mitosis, alternative splicing ensures this region is absent from Mud isoforms that perform a moonlighting role during meiosis. 
    more » « less
  5. Edelstein-Keshet, Leah (Ed.)
    The search-and-capture model of spindle assembly has been a guiding principle for understanding prometaphase for decades. The computational model presented allows one to address two questions: how rapidly the microtubule–kinetochore connections are made, and how accurate these connections are. In most previous numerical simulations, the model geometry was drastically simplified. Using the CellDynaMo computational platform, we previously introduced a geometrically and mechanically realistic 3D model of the prometaphase mitotic spindle, and used it to evaluate thermal noise and microtubule kinetics effects on the capture of a single chromosome. Here, we systematically investigate how geometry and mechanics affect a spindle assembly’s speed and accuracy, including nuanced distinctions between merotelic, mero-amphitelic, and mero-syntelic chromosomes. We find that softening of the centromere spring improves accuracy for short chromosome arms, but accuracy disappears for long chromosome arms. Initial proximity of chromosomes to one spindle pole makes assembly accuracy worse, while initial chromosome orientation matters less. Chromokinesins, added onto flexible chromosome arms, allow modeling of the polar ejection force, improving a spindle assembly’s accuracy for a single chromosome. However, spindle space crowding by multiple chromosomes worsens assembly accuracy. Our simulations suggest that the complex microtubule network of the early spindle is key to rapid and accurate assembly. 
    more » « less