skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The initiation and early development of apical–basal polarity in Toxoplasma gondii
ABSTRACT The body plan of the human parasite Toxoplasma gondii has a well-defined polarity. The minus ends of the 22 cortical microtubules are anchored to the apical polar ring, which is a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end and is crucial for cytokinesis. How this apical–basal polarity is initiated is unknown. Here, we have examined the development of the apical polar ring and the basal complex using expansion microscopy. We found that substructures in the apical polar ring have different sensitivities to perturbations. In addition, apical–basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the nascent daughter framework grows towards the centrioles, the apical and basal arcs co-develop ahead of the microtubule array. Finally, two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of individual proteins has a modest impact on the lytic cycle. However, the loss of both proteins results in abnormalities in the microtubule array and in highly reduced plaquing and invasion efficiency.  more » « less
Award ID(s):
2119963
PAR ID:
10594781
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Journal of Cell Science
Date Published:
Journal Name:
Journal of Cell Science
Volume:
137
Issue:
19
ISSN:
0021-9533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bloom, Kerry (Ed.)
    Cortical microtubules influence plant cell shape by guiding cellulose deposition. Epidermal hypocotyl cells in Arabidopsis thaliana create distinct cortical microtubule array patterns to enable axial cell growth. How these array patterns are created and maintained during cell wall formation is a critical and unsolved problem in cell biology. Previous work showed that arrays aligned longitudinally with the cell's growth axis have a “split bipolar” organization, with microtubules treadmilling toward the apical or basal ends of the cell from a region of antiparallel overlap at the cell's midzone. The underlying order or architecture of these coaligned arrays prompted us to ask whether microtubules oriented transversely to the cell's axis are organized to a similar degree. Creating new fluorescently tagged End-Binding Protein 1b (EB1b) probes to circumvent gain-of-function effects observed for GFP-EB1b, we found that transverse arrays form persistent, nearly unipolar domains of microtubules treadmilling around the short axis of the cell, independent of the EB1b probe used. Our findings reveal an organizational strategy for transverse arrays distinct from that of longitudinal arrays, with implications for the mechanisms of array pattern creation and maintenance. 
    more » « less
  2. Zhu, Xueliang (Ed.)
    The tubulin-containing cytoskeleton of the human parasite Toxoplasma gondii includes several distinct structures: the conoid, formed of 14 ribbon-like tubulin polymers, and the array of 22 cortical microtubules (MTs) rooted in the apical polar ring. Here we analyze the structure of developing daughter parasites using both 3D-SIM and expansion microscopy. Cortical MTs and the conoid start to develop almost simultaneously, but from distinct precursors near the centrioles. Cortical MTs are initiated in a fixed sequence, starting around the periphery of a short arc that extends to become a complete circle. The conoid also develops from an open arc into a full circle, with a fixed spatial relationship to the centrioles. The patterning of the MT array starts from a “blueprint” with ∼five-fold symmetry, switching to 22-fold rotational symmetry in the final product, revealing a major structural rearrangement during daughter growth. The number of MT is essentially invariant in the wild-type array, but is perturbed by the loss of some structural components of the apical polar ring. This study provides insights into the development of tubulin-containing structures that diverge from conventional models, insights that are critical for understanding the evolutionary paths leading to construction and divergence of cytoskeletal frameworks. 
    more » « less
  3. ABSTRACT Plant cells create a plasma membrane‐associated network of microtubules that are nucleated by γ‐tubulin ring complexes primarily through microtubule‐dependent microtubule nucleation (MDMN). This dynamic array organizes into specific patterns in response to developmental and environmental cues to influence primary cell wall construction. The molecular mechanisms directing the creation of cortical microtubule array patterns are largely unknown. The hetero‐octameric AUGMIN complex facilitates mitotic spindle formation by associating γ‐tubulin ring complexes with existing spindle microtubules and creating parallel branched microtubules through MDMN. AUGMIN8, the key linker protein connecting the AUGMIN complex to the parent microtubule, is encoded by a paralogous family of QWRF genes in flowering plants. Members of the QWRF family are distinguished by an unstructured N‐terminal half encoded in a single 5′ exon. We hypothesize that the QWRF paralogs form interchangeable AUGMIN microtubule binding subunits that confer specific roles to the AUGMIN complex in mitotic and non‐mitotic microtubule arrays. We identify four QWRF family members expressed inArabidopsishypocotyl cells and investigate the sites of QWRF interaction with cortical microtubules using transient transformation of fluorescently tagged constructs in the heterologousNicotiana benthamianasystem. We show that full‐length QWRF8 and QWRF4 associate with non‐mitotic, cortical microtubules as distributed puncta where QWRF8 shows evidence for two independent sites of microtubule association. Sequence comparisons and in vivo assay with homologous fragments from QWRF1, 2, 4, and 5 define a shared N‐terminal conserved microtubule association domain. We additionally identify protein regions leading to the formation of microtubule‐associated “QWRF bodies” potentially linked to discontinuous localization on microtubules. We identify the “QWRF” protein motif as a conserved domain associating the AUGMIN8 paralogs with AUGMIN6, part of the larger AUGMIN complex. 
    more » « less
  4. Abstract Cell divisions are accurately positioned to generate cells of the correct size and shape. In plant cells, the new cell wall is built in the middle of the cell by vesicles trafficked along an antiparallel microtubule and a microfilament array called the phragmoplast. The phragmoplast expands toward a specific location at the cell cortex called the division site, but how it accurately reaches the division site is unclear. We observed microtubule arrays that accumulate at the cell cortex during the telophase transition in maize (Zea mays) leaf epidermal cells. Before the phragmoplast reaches the cell cortex, these cortical-telophase microtubules transiently interact with the division site. Increased microtubule plus end capture and pausing occur when microtubules contact the division site-localized protein TANGLED1 or other closely associated proteins. Microtubule capture and pausing align the cortical microtubules perpendicular to the division site during telophase. Once the phragmoplast reaches the cell cortex, cortical-telophase microtubules are incorporated into the phragmoplast primarily by parallel bundling. The addition of microtubules into the phragmoplast promotes fine-tuning of the positioning at the division site. Our hypothesis is that division site-localized proteins such as TANGLED1 organize cortical microtubules during telophase to mediate phragmoplast positioning at the final division plane. 
    more » « less
  5. Abstract BackgroundMorphological properties of tissues and organs rely on cell growth. The growth of plant cells is determined by properties of a tough outer cell wall that deforms anisotropically in response to high turgor pressure. Cortical microtubules bias the mechanical anisotropy of a cell wall by affecting the trajectories of cellulose synthases in the wall that polymerize cellulose microfibrils. The microtubule cytoskeleton is often oriented in one direction at cellular length-scales to regulate growth direction, but the means by which cellular-scale microtubule patterns emerge has not been well understood. Correlations between the microtubule orientation and tensile forces in the cell wall have often been observed. However, the plausibility of stress as a determining factor for microtubule patterning has not been directly evaluated to date. ResultsHere, we simulated how different attributes of tensile forces in the cell wall can orient and pattern the microtubule array in the cortex. We implemented a discrete model with transient microtubule behaviors influenced by local mechanical stress in order to probe the mechanisms of stress-dependent patterning. Specifically, we varied the sensitivity of four types of dynamic behaviors observed on the plus end of microtubules – growth, shrinkage, catastrophe, and rescue – to local stress. Then, we evaluated the extent and rate of microtubule alignments in a two-dimensional computational domain that reflects the structural organization of the cortical array in plant cells. ConclusionOur modeling approaches reproduced microtubule patterns observed in simple cell types and demonstrated that a spatial variation in the magnitude and anisotropy of stress can mediate mechanical feedback between the wall and of the cortical microtubule array. 
    more » « less