skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: The growth of self-intercalated Nb1+ x Se2 by molecular beam epitaxy: The effect of processing conditions on the structure and electrical resistivity
We report on the synthesis of self-intercalated Nb1+xSe2 thin films by molecular beam epitaxy. Nb1+xSe2 is a metal-rich phase of NbSe2 where additional Nb atoms populate the van der Waals gap. The grown thin films are studied as a function of the Se to Nb beam equivalence pressure ratio (BEPR). X-ray photoelectron spectroscopy and x-ray diffraction indicate that BEPRs of 5:1 and greater result in the growth of the Nb1+xSe2 phase and that the amount of intercalation is inversely proportional to the Se to Nb BEPR. Electrical resistivity measurements also show an inverse relationship between BEPR and resistivity in the grown Nb1+xSe2 thin films. A second Nb-Se compound with a stoichiometry of ∼1:1 was synthesized using a Se to Nb BEPR of 2:1; in contrast to the Nb1+xSe2 thin films, this compound did not show evidence of a layered structure.  more » « less
Award ID(s):
1939012
PAR ID:
10489527
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
JVSTA
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
4
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 4d transition metal oxides have emerged as promising materials for numerous applications including high mobility electronics. SrNbO3 is one such candidate material, serving as a good donor material in interfacial oxide systems and exhibiting high electron mobility in ultrathin films. However, its synthesis is challenging due to the metastable nature of the d1 Nb4+ cation and the limitations in the delivery of refractory Nb. To date, films have been grown primarily by pulsed laser deposition (PLD), but development of a means to grow and stabilize the material via molecular beam epitaxy (MBE) would enable studies of interfacial phenomena and multilayer structures that may be challenging by PLD. To that end, SrNbO3 thin films were grown using hybrid MBE for the first time using a tris(diethylamido)(tert-butylimido) niobium precursor for Nb and an elemental Sr source on GdScO3 substrates. Varying thicknesses of insulating SrHfO3 capping layers were deposited using a hafnium tert-butoxide precursor for Hf on top of SrNbO3 films to preserve the metastable surface. Grown films were transferred in vacuo for x-ray photoelectron spectroscopy to quantify elemental composition, density of states at the Fermi energy, and Nb oxidation state. Ex situ studies by x-ray absorption near edge spectroscopy and scanning transmission electron microscopy illustrate that the SrHfO3 capping plays an important role in preserving the crystalline quality of the material and the Nb 4d1 metastable charge state under atmospheric conditions. 
    more » « less
  2. We report the synthesis and electronic properties of the correlated metal CaVO3, grown by hybrid molecular beam epitaxy. Films were grown on (100) LaAlO3 substrates at a temperature of 900 °C by supplying a flux of elemental Ca through a thermal effusion cell and metalorganic precursor, vanadium oxitriisopropoxide, as a source of vanadium. The presence of a self-regulated growth regime was revealed by the appearance of a specific surface reconstruction detected by reflection high-energy electron diffraction. Films grown within the growth window were characterized by atomically flat surfaces. X-ray reciprocal space maps revealed that the films were coherently strained to the substrate and inherited its twinned microstructure. Despite the presence of twin walls, CaVO3 thin films, grown within the stoichiometric growth window, revealed very low electrical resistivities at low temperatures, with residual resistivity ratios exceeding 90, while films grown at either Ca- or V-excess show deteriorated transport properties, attributed to the presence of extrinsic defects arising from the non-stoichiometry present in these films. 
    more » « less
  3. Abstract Understanding surface stability becomes critical as 2D materials like SnSe are developed for piezoelectric and optical applications. SnSe thin films deposited by molecular beam epitaxy showed no structural changes after a two-year exposure to atmosphere, as confirmed by X-ray diffraction and Raman spectroscopy. X-ray photoelectron spectroscopy and reflectivity show a stable 3.5 nm surface oxide layer, indicating a self-arresting oxidative process. Resistivity measurements show an electrical response dominated by SnSe post-exposure. This work shows that SnSe films can be used in ambient conditions with minimal risk of long-term degradation, which is critical for the development of piezoelectric or photovoltaic devices. Graphical Abstract 
    more » « less
  4. Epitaxial untwinned SrRuO3 thin films were grown on (110)-oriented DyScO3 substrates by molecular-beam epitaxy. We report an exceptional sample with a residual resistivity ratio (RRR), ρ [300 K]/ρ [4 K] of 205 and a ferromagnetic Curie temperature, TC, of 168.3 K. We compare the properties of this sample to other SrRuO3 films grown on DyScO3(110) with RRRs ranging from 8.8 to 205, and also compare it to the best reported bulk single crystal of SrRuO3. We determine that SrRuO3 thin films grown on DyScO3(110) have an enhanced TC as long as the RRR of the thin film is above a minimum electrical quality threshold. This RRR threshold is about 20 for SrRuO3. Films with lower RRR exhibit TCs that are significantly depressed from the intrinsic strain-enhanced value. 
    more » « less
  5. We demonstrate the epitaxial growth of the first two members, and the n=∞ member of the homologous Ruddlesden–Popper series of Ban+1InnO2.5n+1 of which the n=1 member was previously unknown. The films were grown by suboxide molecular-beam epitaxy where the indium is provided by a molecular beam of indium-suboxide [In2O (g)]. To facilitate ex situ characterization of the highly hygroscopic barium indate films, a capping layer of amorphous SiO2 was deposited prior to air exposure. The structural quality of the films was assessed by x-ray diffraction, reflective high-energy electron diffraction, and scanning transmission electron microscopy. 
    more » « less