Abstract The upper Ediacaran stratigraphic record hosts fossil assemblages of Earth’s earliest communities of complex, macroscopic, multicellular life. Tubular fossils are a common and diverse, though frequently undercharacterized, component of many of these assemblages. Gaojiashania cyclus is an enigmatic tubular fossil and candidate index fossil found in upper Ediacaran strata globally and is best known from the Gaojiashan Lagerstätte of South China. Here we describe a recently discovered assemblage of Gaojiashania fossils from the Ediacaran Dunfee Member of the Deep Spring Formation of Nevada, USA. Both body and trace fossil affinities have been proposed for Gaojiashania; we present morphological and biostratinomic evidence for a body fossil affinity for the Dunfee specimens. Additionally, previous studies have highlighted that Ediacaran tubular fossils are characterized by a wide range of preservational modes, including association with pyrite, apatite, or clay minerals and preservation as carbonaceous compressions. Petrographic, SEM, and EDS data indicate that the Dunfee Gaojiashania specimens are preserved as ‘Ediacara-style’ external, internal and composite molds, in siltstone and sandstone with a clay mineral-rich matrix of both aluminosilicates and non-aluminous Mg- and Fe-rich silicate minerals that we interpret as authigenic clays. Authigenic clay-mediated fossilization of unmineralized tissues, including moldic preservation in heterolithic siliciclastic strata, as indicated by the Dunfee Gaojiashania, may be linked to the prevalence of both silica-rich and ferruginous seawater conditions prior to both the radiation of silica-biomineralizing organisms and the rise of ocean and atmospheric oxygen to modern levels. In this light, clay authigenesis may have played a critical role in facilitating multiple modes of Ediacaran and Cambrian exceptional fossilization, thus shaping the stratigraphic distribution of a range of Ediacara macrofossil taxa.
more »
« less
Is the middle Cambrian Brooksella a hexactinellid sponge, trace fossil or pseudofossil?
First described as a medusoid jellyfish, the “star-shaped” Brooksella from the Conasauga shale Lagerstätten, Southeastern USA, was variously reconsidered as algae, feeding traces, gas bubbles, and most recently hexactinellid sponges. In this work, we present new morphological, chemical, and structural data to evaluate its hexactinellid affinities, as well as whether it could be a trace fossil or pseudofossil. External and cross-sectional surfaces, thin sections, X-ray computed tomography (CT) and micro-CT imaging, revealed no evidence that Brooksella is a hexactinellid sponge or a trace fossil. Although internally Brooksella contains abundant voids and variously orientated tubes consistent with multiple burrowing or bioeroding organisms, these structures have no relation to Brooksella’s external lobe-like morphology. Furthermore, Brooksella has no pattern of growth comparable to the linear growth of early Paleozoic hexactinellids; rather, its growth is similar to syndepositional concretions. Lastly, Brooksella , except for its lobes and occasional central depression, is no different in microstructure to the silica concretions of the Conasauga Formation, strongly indicating it is a morphologically unusual endmember of the silica concretions of the formation. These findings highlight the need for thorough and accurate descriptions in Cambrian paleontology; wherein care must be taken to examine the full range of biotic and abiotic hypotheses for these compelling and unique fossils.
more »
« less
- Award ID(s):
- 1745057
- PAR ID:
- 10489570
- Editor(s):
- PeerJ
- Publisher / Repository:
- PeerJ
- Date Published:
- Journal Name:
- PeerJ
- Edition / Version:
- 1
- Volume:
- 11
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e14796
- Subject(s) / Keyword(s):
- Middle Cambrian hexactinellids sponges trace fossils pseudofossils concretions
- Format(s):
- Medium: X Size: 2 mb Other: .pdf
- Size(s):
- 2 mb
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ferromanganese concretions commonly occur in shallow‐water coastal regions worldwide. In the Baltic Sea, they can record information about past and present underwater environments and could be a potential source for critical raw materials. We report on their microstructural characteristics and magnetic properties and link them to their formation mechanisms and environmental significance. Microstructural investigations from nano‐ and micro‐computed tomography, electron microscopy, and micro‐X‐ray fluorescence elemental mapping reveal diverse growth patterns within concretions of different morphologies. Alternating Fe‐ and Mn‐rich growth bands indicate fluctuating redox conditions during formation. Bullet‐shaped magnetofossils, produced by magnetotactic bacteria, are present, which suggests the influence of bacterial activity on concretion formation. Spheroidal concretions, which occur in deeper and more tranquil environments, have enhanced microbial biomineralization and magnetofossil preservation. Conversely, crusts and discoidal concretions from shallower and more energetic environments contain fewer magnetofossils and have a greater detrital content. Our results provide insights into concretion formation mechanisms and highlight the importance of diagenetic processes, oxygen availability, and bacterial activity in the Baltic Sea.more » « less
-
Fossiliferous carbonate concretions are commonly found in sediments deposited in the Late Cretaceous Western Interior Seaway. Although concretions are diagenetic features, well-preserved fossils from within them have been instrumental in reconstructing the temperature and δ18O value of Western Interior Seaway seawater, which is essential for accurate reconstruction of Late Cretaceous climate. Here, we constrain formation conditions of Late Campanian and early Maastrichtian carbonate concretions by combining triple oxygen isotope measurements with carbonate clumped isotope paleothermometry on different carbonate phases within the concretions. We measured both fossil skeletal aragonite and sparry calcite infill from cracks and within macrofossil voids to evaluate differences between “primary” and “altered” geochemical signals. Based on the two temperature-sensitive isotope systems of the primary fossil shell aragonite, the temperature of the Western Interior Seaway was between 20 °C and 40 °C and was likely thermally stratified during the Campanian. The reconstructed δ18Oseawater values of ∼−1‰ for Campanian Western Interior Seaway waters are similar to those expected for the open ocean during greenhouse climates, while the Maastrichtian Western Interior Seaway may have been more restricted, with a δ18Oseawater value of ∼2‰, which reflects more evaporative conditions. We reconstructed the diagenetic history of the sparry infill and altered fossils using a fluid-rock mixing model. Alteration temperature, alteration fluid δ18O value, and the initial formation temperature were calculated by applying the fluid-rock mixing model to a particle swarm optimization algorithm. We found a different range of initial formation temperatures between the Campanian (25−38 °C) and Maastrichtian (9−28 °C). We also found that alteration in the presence of light meteoric fluids (δ18O ≈ −10‰) is required to explain both the sparry infill and the altered fossil isotopic values. Based on our results, both lithification and alteration of the carbonates occurred soon after burial, and light meteoric fluids support prior findings that high-topographic relief existed on the western margin of the Western Interior Seaway during the Late Cretaceous. As one of the first studies to apply these techniques in concert and across multiple mineralogical phases within samples, our results provide important constraints on paleoenvironmental conditions in an enigmatic ocean system and will improve interpretations of the overall health of ecosystems leading into the end-Cretaceous mass extinction.more » « less
-
null (Ed.)Sea ice is critical in structuring Antarctic marine ecosystems, controlling disturbance and primary productivity. Sea ice either melts annually or persists for multiple years, but variability in sea-ice duration is poorly understood prior to satellite images. The Antarctic scallop Adamussium colbecki, with its circum-Antarctic distribution and Holocene fossil history, may be a proxy for sea-ice duration. Previous work on A. colbecki links some trace elements to ice melt and productivity. Further, increments between growth bands (striae) are thought to vary seasonally. To evaluate A. colbecki suitability as a sea-ice proxy, we tested correspondence between growth and trace elements known to represent sea ice or productivity at two sites in western McMurdo Sound: Explorers Cove (EC) with multiannual sea ice and Bay of Sails (BOS) with annual sea ice. Trace element signals should be dampened or absent at EC, whereas those from BOS should cycle annually. One A. colbecki shell each from EC and BOS were collected live in 12 m of water. Trace elements previously linked to ice melt (Mn/Ca, Fe/Ca, and Pb/Ca), metabolism (Mg/Ca), and primary productivity (Ba/Ca, Li/Ca) were sampled from interstrial increments using an LA-ICP-MS along the central axis from umbo to last striae. Interstrial distances (ISDs) were measured and compared to trace elements using wavelet coherence analysis. Coherence (covariance between ISD and trace elements) exceeding 95% significance are reported here. Results indicate that ISD and trace elements only cohere during episodic sea-ice melt at EC and cohere throughout adult growth at BOS. All EC trace element concentrations display a common pattern: cyclic growth followed minimal variation in early adult ontogeny, with intermittent variation resuming later in adult growth. In contrast, trace elements from the BOS scallop exhibit strong cyclic behavior throughout ontogeny. ISD coheres with trace elements at EC for short strial sequences (5-30) twice in adult growth, corresponding to partial sea ice melts at EC during 1999 and 2002. Conversely, BOS trace elements cohere with ISD for long (20-140) strial sequences during adult growth, indicating annual sea-ice melt. Results indicate that A. colbecki archives sea-ice duration, thus its fossil record can be used to investigate past variability.more » « less
-
Abstract The os paradoxum or dumb-bell-shaped bone is a paired bone occurring in the middle of the specialized bill of the platypus Ornithorhynchus anatinus . It has been variously considered as a neomorph of the platypus, as the homologue of the paired vomer of sauropsids, or as a part of the paired premaxillae. A review of the near 200-year history of this element strongly supports the os paradoxum as a remnant of the medial palatine processes of the premaxillae given its ontogenetic continuity with the premaxillae and association with the vomeronasal organ and cartilage, incisive foramen, and cartilaginous nasal septum. In conjunction with this hypothesis, homologies of the unpaired vomer of extant mammals and the paired vomer of extant sauropsids are also supported. These views are reinforced with observations from CT scans of O. anatinus , the Miocene ornithorhynchid Obdurodon dicksoni , and the extant didelphid marsupial Didelphis marsupialis . At the choanae, Obdurodon has what appears to be a separate parasphenoid bone unknown in extant monotremes.more » « less
An official website of the United States government

