skip to main content


Title: Elucidating the patterns of pleiotropy and its biological relevance in maize

Pleiotropy—when a single gene controls two or more seemingly unrelated traits—has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56–32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.

 
more » « less
Award ID(s):
1822330
NSF-PAR ID:
10489602
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Qu, Li-Jia
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Genetics
Volume:
19
Issue:
3
ISSN:
1553-7404
Page Range / eLocation ID:
e1010664
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density genetic marker data—18M markers—from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown in field trials across at least 7 US states and scored for 162 distinct trait data sets enabled the identification of of 2,154 suggestive marker-trait associations and 697 confident associations in the maize genome using a resampling-based genome-wide association strategy. The precision of individual marker-trait associations was estimated to be 3 genes based on a reference set of genes with known phenotypes. Examples were observed of both genetic loci associated with variation in diverse traits (e.g., above-ground and below-ground traits), as well as individual loci associated with the same or similar traits across diverse environments. Many significant signals are located near genes whose functions were previously entirely unknown or estimated purely via functional data on homologs. This study demonstrates the potential of mining community association panel data using new higher-density genetic marker sets combined with resampling-based genome-wide association tests to develop testable hypotheses about gene functions, identify potential pleiotropic effects of natural genetic variants, and study genotype-by-environment interaction.

     
    more » « less
  2. Hake, Sarah (Ed.)

    Genomic prediction typically relies on associations between single-site polymorphisms and traits of interest. This representation of genomic variability has been successful for predicting many complex traits. However, it usually cannot capture the combination of alleles in haplotypes and it has generated little insight about the biological function of polymorphisms. Here we present a novel and cost-effective method for imputingcishaplotype associated RNA expression (HARE), studied their transferability across tissues, and evaluated genomic prediction models within and across populations. HARE focuses on tightly linkedcisacting causal variants in the immediate vicinity of the gene, while excludingtranseffects from diffusion and metabolism. Therefore, HARE estimates were more transferrable across different tissues and populations compared to measured transcript expression. We also showed that HARE estimates captured one-third of the variation in gene expression. HARE estimates were used in genomic prediction models evaluated within and across two diverse maize panels–a diverse association panel (Goodman Association panel) and a large half-sib panel (Nested Association Mapping panel)–for predicting 26 complex traits. HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved haplotype structure, suggesting that HARE carried functional information in addition to information about haplotype structure. The largest increase was observed when the model was trained in the Nested Association Mapping panel and tested in the Goodman Association panel. Additionally, HARE yielded higher within-population prediction accuracy as compared to measured expression values. The accuracy achieved by measured expression was variable across tissues, whereas accuracy by HARE was more stable across tissues. Therefore, imputing RNA expression of genes by haplotype is stable, cost-effective, and transferable across populations.

     
    more » « less
  3. Abstract

    The ability of animals to sync the timing and location of molting (the replacement of hair, skin, exoskeletons or feathers) with peaks in resource availability has important implications for their ecology and evolution. In migratory birds, the timing and location of pre-migratory feather molting, a period when feathers are shed and replaced with newer, more aerodynamic feathers, can vary within and between species. While hypotheses to explain the evolution of intraspecific variation in the timing and location of molt have been proposed, little is known about the genetic basis of this trait or the specific environmental drivers that may result in natural selection for distinct molting phenotypes. Here we take advantage of intraspecific variation in the timing and location of molt in the iconic songbird, the Painted Bunting (Passerina ciris) to investigate the genetic and ecological drivers of distinct molting phenotypes. Specifically, we use genome-wide genetic sequencing in combination with stable isotope analysis to determine population genetic structure and molting phenotype across thirteen breeding sites. We then use genome-wide association analysis (GWAS) to identify a suite of genes associated with molting and pair this with gene-environment association analysis (GEA) to investigate potential environmental drivers of genetic variation in this trait. Associations between genetic variation in molt-linked genes and the environment are further tested via targeted SNP genotyping in 25 additional breeding populations across the range. Together, our integrative analysis suggests that molting is in part regulated by genes linked to feather development and structure (GLI2andCSPG4) and that genetic variation in these genes is associated with seasonal variation in precipitation and aridity. Overall, this work provides important insights into the genetic basis and potential selective forces behind phenotypic variation in what is arguably one of the most important fitness-linked traits in a migratory bird.

     
    more » « less
  4. Hernandez, R (Ed.)
    Abstract Gene expression links genotypes to phenotypes, so identifying genes whose expression is shaped by selection will be important for understanding the traits and processes underlying local adaptation. However, detecting local adaptation for gene expression will require distinguishing between divergence due to selection and divergence due to genetic drift. Here, we adapt a QST−FST framework to detect local adaptation for transcriptome-wide gene expression levels in a population of diverse maize genotypes. We compare the number and types of selected genes across a wide range of maize populations and tissues, as well as selection on cold-response genes, drought-response genes, and coexpression clusters. We identify a number of genes whose expression levels are consistent with local adaptation and show that genes involved in stress response show enrichment for selection. Due to its history of intense selective breeding and domestication, maize evolution has long been of interest to researchers, and our study provides insight into the genes and processes important for in local adaptation of maize. 
    more » « less
  5. Abstract Background

    Access to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited.

    Results

    Here we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions.

    Conclusion

    Our results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model.

     
    more » « less