skip to main content


Title: Goodbye to Chi by Eye: A Bayesian Analysis of Photometric Binaries in Six Open Clusters
Abstract

We present a robust methodology for identifying photometric binaries in star clusters. Using Gaia DR3, Pan-STARRS, and Two Micron All Sky Survey data, we self-consistently define the cluster parameters and binary demographics for the open clusters (OCs) NGC 2168 (M35), NGC 7789, NGC 6819, NGC 2682 (M67), NGC 188, and NGC 6791. These clusters span in age from ∼200 Myr (NGC 2168) to more than ∼8 Gyr (NGC 6791) and have all been extensively studied in the literature. We use the Bayesian Analysis of Stellar Evolution software suite to derive the age, distance, reddening, metallicity, binary fraction, and binary mass-ratio posterior distributions for each cluster. We perform a careful analysis of our completeness and also compare our results to previous spectroscopic surveys. For our sample of main-sequence stars with masses between 0.6 and 1M, we find that these OCs have similar binary fractions that are also broadly consistent with the field multiplicity fraction. Within the clusters, the binary fraction increases dramatically toward the cluster centers, likely a result of mass segregation. Furthermore nearly all clusters show evidence of mass segregation within the single and binary populations. The OC binary fraction increases significantly with cluster age in our sample, possibly due to a combination of mass-segregation and cluster-dissolution processes. We also find a hint of an anticorrelation between binary fraction and cluster central density as well as total cluster mass, possibly due to an increasing frequency of higher-energy close stellar encounters that inhibit long-period binary survival and/or formation.

 
more » « less
Award ID(s):
2149425 2107738
NSF-PAR ID:
10489695
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 41
Size(s):
Article No. 41
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We search for mass segregation in the intermediate-aged open cluster NGC 6819 within a carefully identified sample of probable cluster members. Using photometry from Gaia, Pan-STARRS, and the Two Micron All Sky Survey as inputs for a Bayesian statistics software suite, BASE-9, we identify a rich population of (photometric) binaries and derive posterior distributions for the cluster age, distance, metallicity, and reddening, as well as star-by-star photometric membership probabilities, masses, and mass ratios (for binaries). Within our entire sample, we identify 2632 cluster members and 777 binaries. We then select a main-sequence “primary sample” with 14.85 <G< 19.5, containing 1342 cluster members and 250 binaries with mass ratiosq> 0.5, to investigate mass segregation. Within this primary sample, we find the binary radial distribution is significantly shifted toward the cluster center as compared to the single stars, resulting in a binary fraction that increases significantly toward the cluster core. Furthermore, we find that within the binary sample, more massive binaries have more centrally concentrated radial distributions than less massive binaries. The same is true for the single stars. We verify the expectation of mass segregation for this stellar sample in NGC 6819 through both relaxation time arguments and by investigating a sophisticatedN-body model of the cluster. Importantly, this is the first study to investigate mass segregation of the binaries in the open cluster NGC 6819.

     
    more » « less
  2. null (Ed.)
    Context. Models of stellar structure and evolution can be constrained using accurate measurements of the parameters of eclipsing binary members of open clusters. Multiple binary stars provide the means to tighten the constraints and, in turn, to improve the precision and accuracy of the age estimate of the host cluster. In the previous two papers of this series, we have demonstrated the use of measurements of multiple eclipsing binaries in the old open cluster NGC 6791 to set tighter constraints on the properties of stellar models than was previously possible, thereby improving both the accuracy and precision of the cluster age. Aims. We identify and measure the properties of a non-eclipsing cluster member, V56, in NGC 6791 and demonstrate how this provides additional model constraints that support and strengthen our previous findings. Methods. We analyse multi-epoch spectra of V56 from FLAMES in conjunction with the existing photometry and measurements of eclipsing binaries in NGC6971. Results. The parameters of the V56 components are found to be M p  = 1.103 ± 0.008  M ⊙ and M s  = 0.974 ± 0.007  M ⊙ , R p  = 1.764 ± 0.099  R ⊙ and R s  = 1.045 ± 0.057  R ⊙ , T eff,p  = 5447 ± 125 K and T eff,s  = 5552 ± 125 K, and surface [Fe/H] = +0.29 ± 0.06 assuming that they have the same abundance. Conclusions. The derived properties strengthen our previous best estimate of the cluster age of 8.3 ± 0.3 Gyr and the mass of stars on the lower red giant branch (RGB), which is M RGB  = 1.15 ± 0.02  M ⊙ for NGC 6791. These numbers therefore continue to serve as verification points for other methods of age and mass measures, such as asteroseismology. 
    more » « less
  3. Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara , a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment. 
    more » « less
  4. Abstract Recent work has shown that near-infrared (NIR) Hubble Space Telescope (HST) photometry allows us to disentangle multiple populations (MPs) among M dwarfs of globular clusters (GCs) and to investigate this phenomenon in very-low-mass (VLM) stars. Here, we present the color–magnitude diagrams of nine GCs and the open cluster NGC 6791 in the F110W and F160W bands of HST, showing that the main sequences (MSs) below the knee are either broadened or split, thus providing evidence of MPs among VLM stars. In contrast, the MS of NGC 6791 is consistent with a single population. The color distribution of M dwarfs dramatically changes between different GCs, and the color width correlates with the cluster mass. We conclude that the MP ubiquity, variety, and dependence on GC mass are properties common to VLM and more-massive stars. We combined UV, optical, and NIR observations of NGC 2808 and NGC 6121 (M4) to identify MPs along with a wide range of stellar masses (∼0.2–0.8  ⊙ ), from the MS turnoff to the VLM regime, and measured, for the first time, their mass functions (MFs). We find that the fraction of MPs does not depend on the stellar mass and that their MFs have similar slopes. These findings indicate that the properties of MPs do not depend on stellar mass. In a scenario where the second generations formed in higher-density environments than the first generations, the possibility that the MPs formed with the same initial MF would suggest that it does not depend on the environment. 
    more » « less
  5. Abstract

    M35 is a young open cluster and home to an extensive binary population. Using Gaia Data Release 3, Pan-STARRS, and Two Micron All Sky Survey photometry with the Bayesian statistical software, BASE-9, we derive precise cluster parameters, identify single and binary cluster members, and extract their masses. We identify 571 binaries down to GaiaG= 20.3 and a lower limit on the binary frequency offb= 0.41 ± 0.02. We extend the binary demographics by many magnitudes faint-ward of previous (radial-velocity) studies of this cluster and further away from the cluster center (1.°78, roughly 10 core radii). We find the binary stars to be more centrally concentrated than the single stars in the cluster. Furthermore, we find strong evidence for mass segregation within the binary population itself, with progressively more-massive binary samples becoming more and more centrally concentrated. For the single stars, we find weaker evidence for mass segregation; only the most massive single stars (>2.5M) appear more centrally concentrated. Given the cluster age of ∼200 Myr, and our derived half-mass relaxation time for the cluster of 230 ± 84 Myr, we estimate ∼47% of the binary stars and ∼12% of single stars in the cluster have had time to become dynamically mass segregated. Importantly, when we investigate only stars with mass segregation timescales greater than the cluster age, we still find the binaries to be more centrally concentrated than the singles, suggesting the binaries may have formed with a primordially different spatial distribution from that of the single stars.

     
    more » « less