Using the Bayesian Analysis of Stellar Evolution-9 code and Gaia DR3, Pan-STARRS, and 2MASS data, we identify photometric binaries in 35 open clusters (OCs) and constrain their masses. We find a strong correlation between the binary fraction and cluster dynamical age and an even stronger correlation between core binary fraction and cluster dynamical age. We find that the binary mass-ratio (q) distribution of dynamically young OCs is statistically distinct from that of the old OCs. On average, dynamically young OCs display multimodalqdistributions rising toward unity and toward our detection limit ofq= 0.5 while more dynamically evolved clusters display more uniformqdistributions, often with a peak nearq= 1. Interestingly, the uniformqdistribution with a peak nearq= 1 is consistent with binaries in the field. We also observe a similar transition from multimodal to unimodalqdistributions when comparing low-mass to high-mass OCs in our sample. Finally, we find a correlation between the medianqof the binary population in a cluster and the cluster dynamical age. We interpret these results as an indication that dynamical encounters tend to increase the fraction of high-mass-ratio binaries within a given cluster—in particular within the cluster’s core, where stellar dynamics are likely more important. This may be the result of stellar exchanges that tend to produce binaries with largerqand/or the preferential disruption or evaporation of lower-qbinaries.
more »
« less
Goodbye to Chi by Eye: A Bayesian Analysis of Photometric Binaries in Six Open Clusters
Abstract We present a robust methodology for identifying photometric binaries in star clusters. Using Gaia DR3, Pan-STARRS, and Two Micron All Sky Survey data, we self-consistently define the cluster parameters and binary demographics for the open clusters (OCs) NGC 2168 (M35), NGC 7789, NGC 6819, NGC 2682 (M67), NGC 188, and NGC 6791. These clusters span in age from ∼200 Myr (NGC 2168) to more than ∼8 Gyr (NGC 6791) and have all been extensively studied in the literature. We use the Bayesian Analysis of Stellar Evolution software suite to derive the age, distance, reddening, metallicity, binary fraction, and binary mass-ratio posterior distributions for each cluster. We perform a careful analysis of our completeness and also compare our results to previous spectroscopic surveys. For our sample of main-sequence stars with masses between 0.6 and 1M⊙, we find that these OCs have similar binary fractions that are also broadly consistent with the field multiplicity fraction. Within the clusters, the binary fraction increases dramatically toward the cluster centers, likely a result of mass segregation. Furthermore nearly all clusters show evidence of mass segregation within the single and binary populations. The OC binary fraction increases significantly with cluster age in our sample, possibly due to a combination of mass-segregation and cluster-dissolution processes. We also find a hint of an anticorrelation between binary fraction and cluster central density as well as total cluster mass, possibly due to an increasing frequency of higher-energy close stellar encounters that inhibit long-period binary survival and/or formation.
more »
« less
- PAR ID:
- 10489695
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 962
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 41
- Size(s):
- Article No. 41
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We search for mass segregation in the intermediate-aged open cluster NGC 6819 within a carefully identified sample of probable cluster members. Using photometry from Gaia, Pan-STARRS, and the Two Micron All Sky Survey as inputs for a Bayesian statistics software suite, BASE-9, we identify a rich population of (photometric) binaries and derive posterior distributions for the cluster age, distance, metallicity, and reddening, as well as star-by-star photometric membership probabilities, masses, and mass ratios (for binaries). Within our entire sample, we identify 2632 cluster members and 777 binaries. We then select a main-sequence “primary sample” with 14.85 <G< 19.5, containing 1342 cluster members and 250 binaries with mass ratiosq> 0.5, to investigate mass segregation. Within this primary sample, we find the binary radial distribution is significantly shifted toward the cluster center as compared to the single stars, resulting in a binary fraction that increases significantly toward the cluster core. Furthermore, we find that within the binary sample, more massive binaries have more centrally concentrated radial distributions than less massive binaries. The same is true for the single stars. We verify the expectation of mass segregation for this stellar sample in NGC 6819 through both relaxation time arguments and by investigating a sophisticatedN-body model of the cluster. Importantly, this is the first study to investigate mass segregation of the binaries in the open cluster NGC 6819.more » « less
-
Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara , a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment.more » « less
-
Abstract M35 is a young open cluster and home to an extensive binary population. Using Gaia Data Release 3, Pan-STARRS, and Two Micron All Sky Survey photometry with the Bayesian statistical software, BASE-9, we derive precise cluster parameters, identify single and binary cluster members, and extract their masses. We identify 571 binaries down to GaiaG= 20.3 and a lower limit on the binary frequency offb= 0.41 ± 0.02. We extend the binary demographics by many magnitudes faint-ward of previous (radial-velocity) studies of this cluster and further away from the cluster center (1.°78, roughly 10 core radii). We find the binary stars to be more centrally concentrated than the single stars in the cluster. Furthermore, we find strong evidence for mass segregation within the binary population itself, with progressively more-massive binary samples becoming more and more centrally concentrated. For the single stars, we find weaker evidence for mass segregation; only the most massive single stars (>2.5M⊙) appear more centrally concentrated. Given the cluster age of ∼200 Myr, and our derived half-mass relaxation time for the cluster of 230 ± 84 Myr, we estimate ∼47% of the binary stars and ∼12% of single stars in the cluster have had time to become dynamically mass segregated. Importantly, when we investigate only stars with mass segregation timescales greater than the cluster age, we still find the binaries to be more centrally concentrated than the singles, suggesting the binaries may have formed with a primordially different spatial distribution from that of the single stars.more » « less
-
Mass segregation is seen in many star clusters, but whether massive stars form in the center of a cluster or migrate there dynamically is still debated.N-body simulations show that early dynamical mass segregation is possible when sub-clusters merge to form a dense core with a small crossing time. However, the effect of gas dynamics on both the formation and dynamics of the stars could inhibit the formation of the dense core. We aim to study the dynamical mass segregation of star cluster models that include gas dynamics and selfconsistently form stars from the dense substructure in the gas. Our models use the TORCH framework, which is based on AMUSE and includes stellar and magnetized gas dynamics, as well as stellar evolution and feedback from radiation, stellar winds, and supernovae. Our models consist of three star clusters forming from initial turbulent spherical clouds of mass 104, 105, 106M⊙and radius 11.7 pc that have final stellar masses of 3.6 × 103M⊙, 6.5 × 104M⊙, and 8.9 × 105M⊙, respectively. There is no primordial mass segregation in the model by construction. All three clusters become dynamically mass segregated at early times via collapse confirming that this mechanism occurs within sub-clusters forming directly out of the dense substructure in the gas. The dynamics of the embedded gas and stellar feedback do not inhibit the collapse of the cluster. We find that each model cluster becomes mass segregated within 2 Myr of the onset of star formation, reaching the levels observed in young clusters in the Milky Way. However, we note that the exact values are highly time-variable during these early phases of evolution. Massive stars that segregate to the center during core collapse are likely to be dynamically ejected, a process that can decrease the overall level of mass segregation again.more » « less
An official website of the United States government
