skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orbital Parameters and Binary Properties of 37 FGK Stars in the Cores of Open Clusters NGC 2516 and NGC 2422
Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara , a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment.  more » « less
Award ID(s):
1815403
PAR ID:
10337157
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
162
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We search for mass segregation in the intermediate-aged open cluster NGC 6819 within a carefully identified sample of probable cluster members. Using photometry from Gaia, Pan-STARRS, and the Two Micron All Sky Survey as inputs for a Bayesian statistics software suite, BASE-9, we identify a rich population of (photometric) binaries and derive posterior distributions for the cluster age, distance, metallicity, and reddening, as well as star-by-star photometric membership probabilities, masses, and mass ratios (for binaries). Within our entire sample, we identify 2632 cluster members and 777 binaries. We then select a main-sequence “primary sample” with 14.85 <G< 19.5, containing 1342 cluster members and 250 binaries with mass ratiosq> 0.5, to investigate mass segregation. Within this primary sample, we find the binary radial distribution is significantly shifted toward the cluster center as compared to the single stars, resulting in a binary fraction that increases significantly toward the cluster core. Furthermore, we find that within the binary sample, more massive binaries have more centrally concentrated radial distributions than less massive binaries. The same is true for the single stars. We verify the expectation of mass segregation for this stellar sample in NGC 6819 through both relaxation time arguments and by investigating a sophisticatedN-body model of the cluster. Importantly, this is the first study to investigate mass segregation of the binaries in the open cluster NGC 6819. 
    more » « less
  2. Abstract We present a robust methodology for identifying photometric binaries in star clusters. Using Gaia DR3, Pan-STARRS, and Two Micron All Sky Survey data, we self-consistently define the cluster parameters and binary demographics for the open clusters (OCs) NGC 2168 (M35), NGC 7789, NGC 6819, NGC 2682 (M67), NGC 188, and NGC 6791. These clusters span in age from ∼200 Myr (NGC 2168) to more than ∼8 Gyr (NGC 6791) and have all been extensively studied in the literature. We use the Bayesian Analysis of Stellar Evolution software suite to derive the age, distance, reddening, metallicity, binary fraction, and binary mass-ratio posterior distributions for each cluster. We perform a careful analysis of our completeness and also compare our results to previous spectroscopic surveys. For our sample of main-sequence stars with masses between 0.6 and 1M, we find that these OCs have similar binary fractions that are also broadly consistent with the field multiplicity fraction. Within the clusters, the binary fraction increases dramatically toward the cluster centers, likely a result of mass segregation. Furthermore nearly all clusters show evidence of mass segregation within the single and binary populations. The OC binary fraction increases significantly with cluster age in our sample, possibly due to a combination of mass-segregation and cluster-dissolution processes. We also find a hint of an anticorrelation between binary fraction and cluster central density as well as total cluster mass, possibly due to an increasing frequency of higher-energy close stellar encounters that inhibit long-period binary survival and/or formation. 
    more » « less
  3. null (Ed.)
    Context. Models of stellar structure and evolution can be constrained using accurate measurements of the parameters of eclipsing binary members of open clusters. Multiple binary stars provide the means to tighten the constraints and, in turn, to improve the precision and accuracy of the age estimate of the host cluster. In the previous two papers of this series, we have demonstrated the use of measurements of multiple eclipsing binaries in the old open cluster NGC 6791 to set tighter constraints on the properties of stellar models than was previously possible, thereby improving both the accuracy and precision of the cluster age. Aims. We identify and measure the properties of a non-eclipsing cluster member, V56, in NGC 6791 and demonstrate how this provides additional model constraints that support and strengthen our previous findings. Methods. We analyse multi-epoch spectra of V56 from FLAMES in conjunction with the existing photometry and measurements of eclipsing binaries in NGC6971. Results. The parameters of the V56 components are found to be M p  = 1.103 ± 0.008  M ⊙ and M s  = 0.974 ± 0.007  M ⊙ , R p  = 1.764 ± 0.099  R ⊙ and R s  = 1.045 ± 0.057  R ⊙ , T eff,p  = 5447 ± 125 K and T eff,s  = 5552 ± 125 K, and surface [Fe/H] = +0.29 ± 0.06 assuming that they have the same abundance. Conclusions. The derived properties strengthen our previous best estimate of the cluster age of 8.3 ± 0.3 Gyr and the mass of stars on the lower red giant branch (RGB), which is M RGB  = 1.15 ± 0.02  M ⊙ for NGC 6791. These numbers therefore continue to serve as verification points for other methods of age and mass measures, such as asteroseismology. 
    more » « less
  4. Abstract We started a survey with CHARA/MIRC-X and VLTI/GRAVITY to search for low-mass companions orbiting individual components of intermediate-mass binary systems. With the incredible precision of these instruments, we can detect astrometric “wobbles” from companions down to a few tens of microarcseconds. This allows us to detect any previously unseen triple systems in our list of binaries. We present the orbits of 12 companions around early F- to B-type binaries, 9 of which are new detections and 3 of which are first astrometric detections of known radial velocity (RV) companions. The masses of these newly detected components range from 0.45 to 1.3 M ⊙ . Our orbits constrain these systems to a high astrometric precision, with median residuals to the orbital fit of 20–50 μ as in most cases. For seven of these systems we include newly obtained RV data, which help us to identify the system configuration and to solve for masses of individual components in some cases. Although additional RV measurements are needed to break degeneracy in the mutual inclination, we find that the majority of these inner triples are not well aligned with the wide binary orbit. This hints that higher-mass triples are more misaligned compared to solar and lower-mass triples, though a thorough study of survey biases is needed. We show that the ARMADA survey is extremely successful at uncovering previously unseen companions in binaries. This method will be used in upcoming papers to constrain companion demographics in intermediate-mass binary systems down to the planetary-mass regime. 
    more » « less
  5. null (Ed.)
    Abstract The study of white dwarfs, the end stage of stellar evolution for more than 95% of stars, is critical to bettering our understanding of the late stages of the lives of low mass stars. In particular, the post main sequence evolution of binary star systems is complex, and the identification and analysis of double degenerate systems is a crucial step in constraining models of binary star systems. Binary white dwarfs in open star clusters are particularly useful because cluster parameters such as distance, metal content, and total system age are more tightly constrained than for field double degenerates. Here we use the precision astrometry from the Gaia Data Release 2 catalog to study two other white dwarfs which were identified as candidate double degenerates in the field of the open star cluster NGC 6633. One of the two objects, LAWDS 4, is found to have astrometric properties fully consistent with that of the cluster. In such a case, the object is significantly overluminous for a single white dwarf, strongly indicating binarity. The second candidate binary, LAWDS 7, appears to be inconsistent with cluster membership, though a more thorough analysis is necessary to properly quantify the probability. At present we are proceeding to model the photometric and spectroscopic data for both objects as if they were cluster member double degenerates. Results of this latter analysis are forthcoming. Our results will add crucial data to the study of binary star evolution in open star clusters. 
    more » « less