Abstract Understanding the structure of materials is crucial for engineering devices and materials with enhanced performance. Four-dimensional scanning transmission electron microscopy (4D-STEM) is capable of mapping nanometer-scale local crystallographic structure over micron-scale field of views. However, 4D-STEM datasets can contain tens of thousands of images from a wide variety of material structures, making it difficult to automate detection and classification of structures. Traditional automated analysis pipelines for 4D-STEM focus on supervised approaches, which require prior knowledge of the material structure and cannot describe anomalous or deviant structures. In this article, a pipeline for engineering 4D-STEM feature representations for unsupervised clustering using non-negative matrix factorization (NMF) is introduced. Each feature is evaluated using NMF and results are presented for both simulated and experimental data. It is shown that some data representations more reliably identify overlapping grains. Additionally, real space refinement is applied to identify spatially distinct sample regions, allowing for size and shape analysis to be performed. This work lays the foundation for improved analysis of nanoscale structural features in materials that deviate from expected crystallographic arrangement using 4D-STEM.
more »
« less
Knowledge and Instance Mapping: architecture for premeditated interoperability of disparate data for materials
Abstract Predicting and elucidating the impacts of materials on human health and the environment is an unending task that has taken on special significance in the context of nanomaterials research over the last two decades. The properties of materials in environmental and physiological media are dynamic, reflecting the complex interactions between materials and these media. This dynamic behavior requires special consideration in the design of databases and data curation that allow for subsequent comparability and interrogation of the data from potentially diverse sources. We present two data processing methods that can be integrated into the experimental process to encourage pre-mediated interoperability of disparate material data: Knowledge Mapping and Instance Mapping. Originally developed as a framework for the NanoInformatics Knowledge Commons (NIKC) database, this architecture and associated methods can be used independently of the NIKC and applied across multiple subfields of nanotechnology and material science.
more »
« less
- PAR ID:
- 10489711
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Knowledge graphs can be used to help scientists integrate and explore their data in novel ways. NanoMine, built with the Whyis knowledge graph framework, integrates diverse data from over 1,700 polymer nanocomposite experiments. Polymer nanocomposites (polymer materials with nanometer-scale particles embedded in them) exhibit complex changes in their properties depending upon their composition or processing methods. Building an overall theory of how nanoparticles interact with the polymer they are embedded in therefore typically has to rely on an integrated view across hundreds of datasets. Because the NanoMine knowledge graph is able to integrate across many experiments, materials scientists can explore custom visualizations and, with minimal semantic training, produce custom visualizations of their own. NanoMine provides access to experimental results and their provenance in a linked data format that conforms to well-used semantic web ontologies and vocabularies (PROV-O, Schema.org, and the Semanticscience Integrated Ontology). We curated data described by an XML schema into an extensible knowledge graph format that enables users to more easily browse, filter, and visualize nanocomposite materials data. We evaluated NanoMine on the ability for material scientists to produce visualizations that help them explore and understand nanomaterials and assess the diversity of the integrated data. Additionally, NanoMine has been used by the materials science community to produce an integrated view of a journal special issue focusing on data sharing, demonstrating the advantages of sharing data in an interoperable manner.more » « less
-
null (Ed.)This perspective presents a recently developed approach to organize polymer and polymer composite materials through a new form of light-directed organization of photoreactive polymeric media. Under suitable conditions, such media will interact with light, in a mutual dynamic process, that results in the spontaneous organization of both the input light field and, importantly, the polymer media. New material structures can be created in free-radical-initiated media, polymer blends and polymer–solvent mixtures, as well as possibly more complex, multicomponent formulations. An overview of the underlying principles and chemical phenomena and exemplary material structures are presented. Materials produced using this new processing approach can be used as functional coatings, textured surfaces, and membranes, as well as a host of other applications via selection of polymer composition. Key open questions and areas for further inquiry and advancement are presented. Coupling the dynamics of light pattern formation processes to photoreactive matter is a promising new approach to the organization of materials for a range of critical applications and reveals interesting nonlinear dynamic phenomena in the organization of materials.more » « less
-
Abstract Conventional rendering techniques are primarily designed and optimized for single‐frame rendering. In practical applications, such as scene editing and animation rendering, users frequently encounter scenes where only a small portion is modified between consecutive frames. In this paper, we develop a novel approach to incremental re‐rendering of scenes with dynamic objects, where only a small part of a scene moves from one frame to the next. We formulate the difference (or residual) in the image between two frames as a (correlated) light‐transport integral which we call the residual path integral. Efficient numerical solution of this integral then involves (1) devising importance sampling strategies to focus on paths with non‐zero residual‐transport contributions and (2) choosing appropriate mappings between the native path spaces of the two frames. We introduce a set of path importance sampling strategies that trace from the moving object(s) which are the sources of residual energy. We explore path mapping strategies that generalize those from gradient‐domain path tracing to our importance sampling techniques specially for dynamic scenes. Additionally, our formulation can be applied to material editing as a simpler special case. We demonstrate speed‐ups over previous correlated sampling of path differences and over rendering the new frame independently. Our formulation brings new insights into the re‐rendering problem and paves the way for devising new types of sampling techniques and path mappings with different trade‐offs.more » « less
-
Abstract Conventional methods used to identify the dynamical properties of unknown media from scattered mechanical waves rely on analytical or numerical manipulations of the wave equation. These methods show their limitations in scenarios where the analyzed medium is moderately sized and the diffraction from the material edges influences the scattered fields significantly, such as non-destructive diagnostics and metamaterial characterization. Here, we show that convolutional neural networks can interpret the diffracted fields and learn the mapping between the scattered fields and all the effective material parameters including mass density and stiffness tensors from a small set of numerical simulations. Furthermore, networks trained with synthetic data can process physical measurements and are very robust to measurement errors. More importantly, the trained network provides insight into the dynamic behavior of matter including quantitative measures of the scattered field sensitivity to each material property and how the sensitivity changes depending on the material under test.more » « less
An official website of the United States government
