skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2019435

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractThe increasing demand for sustainable food production has driven a surge in the use and commercialization of biological inputs, including biofertilizers. In this context, biofertilizers offer potential benefits for nutrient use efficiency, crop yield and sustainability. However, inconsistent definition of the term “biofertilizer” and regulations, particularly in the USA, hinder market growth and consumer confidence. While the European Union, and countries like Brazil, India, and China have made progress in this area, the USA market, projected to exceed $1 billion by 2029, lacks clear guidelines for biofertilizer production and sale. The USA market is dominated byRhizobiumgenus,Mycorrhizaefungi, andAzospirillumspecies and based products targeting various crops. Although there is a growing and promising market for the use of biofertilizers, there are still many challenges to overcome, and to fully realize the potential of biofertilizers, future research should focus on modes of action, specific claims, and robust regulations that must be established. Key points•The term “biofertilizer” lacks a universally accepted definition•It is necessary establishing a national regulation for biofertilizers in the USA•The biofertilizer market is growing fast and the biggest one is in America 
    more » « less
  2. Abstract Livestock are a critical part of our food systems, yet their abundance globally has been cited as a driver of many environmental and human health concerns. Issues such as soil, water, and air pollution, greenhouse gas emissions, aquifer depletion, antimicrobial resistance genes, and zoonotic disease outbreaks have all been linked to livestock operations. While many studies have examined these issues at depth at local scales, it has been difficult to complete studies at regional or national scales due to the dearth of livestock data, hindering pollution mitigation or response time for tracing and monitoring disease outbreaks. In the U.S. the National Agricultural Statistics Service completes a Census once every 5 years that includes livestock, but data are only available at the county level leaving little inference that can be made at such a coarse spatiotemporal scale. While other data exist through some regulated permitting programs, there are significant data gaps in where livestock are raised, how many livestock are on site at a given time, and how these livestock and, importantly, their waste emissions, are managed. In this perspective, we highlight the need for better livestock data, then discuss the accessibility and key limitations of currently available data. We then feature some recent work to improve livestock data availability through remote-sensing and machine learning, ending with our takeaways to address these data needs for the future of environmental and public health management. 
    more » « less
  3. Abstract National nutrient inventories provide surplus phosphorus (P) estimates derived from county‐scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large‐scale soil testing programs and inventory‐based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory‐measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma. For optimal periods of surplus P aggregation, surplus P was positively correlated with STP based on both Pearson (Arkansas:r = 0.65, North Carolina:r = 0.45, Oklahoma:r = 0.52) and Spearman correlation coefficients (Arkansas:ρ = 0.57, North Carolina:ρ = 0.28, and Oklahoma:ρ = 0.66). Based on Pearson correlations, the optimal surplus P aggregation periods were 10, 30, and 4 years for AR, NC, and OK, respectively. On average, STP was more strongly correlated with surplus P than with individual P inventory components (fertilizer, manure, and crop removal), except in North Carolina. In Arkansas and North Carolina, manure P was positively correlated with STP, and fertilizer P was negatively correlated with STP. Altogether, results suggest that surplus P moderately correlates with STP concentrations, but aggregation period and location‐specific factors influence the strength of the relationship. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Abstract Urine diversion (UD) is a system-of-systems that involves source separation of waste to maximize recovery of valuable nutrients, including phosphorus. Recent research shows how UD systems offer valuable ecological benefits and can aid in water conservation efforts, and public perception studies suggest that UD systems are generally viewed positively by end-users and the general public. Nevertheless, adoption and implementation of this promising sustainability solution remains limited in many countries, including the United States (U.S.). In this perspective, we argue that in order to scale up adoption in the U.S., UD researchers and innovators must do more to address regulatory barriers. We draw on insights from political science research on ‘regulatory regimes’ to introduce the array of regulations that apply to UD systems, with a focus on commercial and institutional buildings. We examine regulatory regimes all along the UD system-of-systems, beginning at the point of collection and ending at the point of beneficial reuse. We then propose next steps to address current regulatory challenges that impact adoption, with an emphasis on the importance of stakeholder coordination. Throughout, we argue that law and regulation plays a critical role in shaping adoption of UD technologies because: (1) different regulatory regimes will be important at different points in the system-of-systems, (2) there may be multiple regulatory regimes that apply to a single subsystem, and (3) it is important to consider that legal and regulatory definitions of a technology may not match scientific understanding. 
    more » « less
  5. Abstract Predicting and elucidating the impacts of materials on human health and the environment is an unending task that has taken on special significance in the context of nanomaterials research over the last two decades. The properties of materials in environmental and physiological media are dynamic, reflecting the complex interactions between materials and these media. This dynamic behavior requires special consideration in the design of databases and data curation that allow for subsequent comparability and interrogation of the data from potentially diverse sources. We present two data processing methods that can be integrated into the experimental process to encourage pre-mediated interoperability of disparate material data: Knowledge Mapping and Instance Mapping. Originally developed as a framework for the NanoInformatics Knowledge Commons (NIKC) database, this architecture and associated methods can be used independently of the NIKC and applied across multiple subfields of nanotechnology and material science. 
    more » « less
  6. Abstract Human urine is a readily available nutrient source that can complement commercial fertilizer production, which relies on finite mineral resources and global supply chains. This study evaluated the effectiveness of a simplified solar distillation process for urine to recover phosphorus (P) and nitrogen for agricultural use and water for non-potable purposes. Synthetic fresh, synthetic hydrolyzed, real fresh, and real hydrolyzed urine were exposed to direct sunlight for 6 h in a simple distillation apparatus, which produced distillation bottoms and distillate. Metal phosphate precipitation in the distillation bottoms was evaluated to recover P. The non-potable water was recovered as distillate. Hydrolyzed urine recovered more metal phosphate solid in the distillation bottoms and had a higher conductivity in the distillate than fresh urine. Hydrolyzed urine also achieved greater distillate volume recovery than fresh urine. Hydrolyzed urine had a greater presence of UV-absorbing organics in the distillate than fresh urine and therefore produced a lower-quality product water. There was no significant correlation between the daily high air temperature and the volume of distillate recovered. This study provides a comprehensive data set on simplified solar distillation of human urine considering the fate of nutrients and water for different types of urine. 
    more » « less
  7. Abstract Phosphorus is essential to plant growth and agricultural crop yields, yet the challenges associated with phosphorus fertilization in agriculture, such as aquatic runoff pollution and poor phosphorus bioavailability, are increasingly difficult to manage. Comprehensively understanding the dynamics of phosphorus uptake and signaling mechanisms will inform the development of strategies to address these issues. This review describes regulatory mechanisms used by specific tissues in the root apical meristem to sense and take up phosphate from the rhizosphere. The major regulatory mechanisms and related hormone crosstalk underpinning phosphate starvation responses, cellular phosphate homeostasis, and plant adaptations to phosphate starvation are also discussed, along with an overview of the major mechanism of plant systemic phosphate starvation responses. Finally, this review discusses recent promising genetic engineering strategies for improving crop phosphorus use and computational approaches that may help further design strategies for improved plant phosphate acquisition. The mechanisms and approaches presented include a wide variety of species including not only Arabidopsis but also crop species such as Oryza sativa (rice), Glycine max (soybean), and Triticum aestivum (wheat) to address both general and species-specific mechanisms and strategies. The aspects of phosphorus deficiency responses and recently employed strategies of improving phosphate acquisition that are detailed in this review may provide insights into the mechanisms or phenotypes that may be targeted in efforts to improve crop phosphorus content and plant growth in low phosphorus soils. 
    more » « less
  8. Abstract Our society depends on the effective management of phosphorus (P). Phosphorus is a key component of agricultural fertilizers to improve crop yields, and also plays a critical role in many industrial processes and consumer products. In the past decade, there have been numerous calls for innovative approaches to manage P more sustainably, as it is a nonrenewable resource that can adversely impact aquatic ecosystems from runoff and inefficiencies in P use. To develop more sustainable solutions that will ultimately be adopted, diverse stakeholder perspectives must be recognized, including those in industry, government, academia, non-governmental organizations, and other civil groups. This study responds to this need by identifying stakeholder views, needs, concerns, and challenges regarding P sustainability. An online survey was developed and deployed to individuals identified as P sustainability experts and professionals in the U.S. and abroad. Based on responses from 96 stakeholder participants from a range of sectors, areas of expertise, and geographies, we found that the vast majority of stakeholders considered current P use to be unsustainable and were very concerned about the ability to manage P sustainably. Stakeholder participants did not distinguish between urgent and long-term challenges, and perceived financial and regulatory issues to be of greatest importance. Stakeholder participants expressed a range of needs to improve P management systems, including improved management practices, new technologies, enhanced regulations, and better approaches for engagement. Outcomes from this work can help inform future research, engagement, and policy priorities to ensure sustainable P management solutions based on stakeholder-identified perspectives and needs. 
    more » « less
  9. Abstract In this Perspective we take an in-depth look at what coordinated stakeholder engagement could entail for phosphorus sustainability. The element phosphorus is critical to life on Earth and to the continued functioning of society as we know it. Yet, how society uses phosphorus is currently unsustainable, both as a resource in support of global food production where inequitable distribution creates food security challenges, but also from an environmental aspect, where mismanagement has led to negative impacts on the quality of agricultural soils, human health, and freshwater and marine ecosystems. A number of initiatives and cross-sector consortia have come together to address sustainable phosphorus management at either global or regional scales. However, these efforts could benefit from a more coordinated approach to stakeholder engagement to identify the diversity of needs and perspectives involved in this complex challenge. Herein we examine some examples of different approaches to developing such coordinated stakeholder engagement in other areas of environmental sustainability. We consider how to apply the lessons learned from those efforts toward stakeholder coordination in the realm of phosphorus sustainability. Particularly, we discuss the value of a coordinating body to manage the communications and knowledge sharing necessary to develop trust and cooperation among diverse stakeholder groups and to transition society to more sustainable phosphorus use. 
    more » « less
  10. Abstract Meeting ambitious climate targets will require deploying the full suite of mitigation options, including those that indirectly reduce greenhouse-gas (GHG) emissions. Healthy diets have sustainability co-benefits by directly reducing livestock emissions as well as indirectly reducing land use emissions. Increased crop productivity could indirectly avoid emissions by reducing cropland area. However, there is disagreement on the sustainability of proposed healthy U.S. diets and a lack of clarity on how long-term sustainability benefits may change in response to shifts in the livestock sector. Here, we explore the GHG emissions impacts of seven scenarios that vary U.S. crop yields and healthier diets in the U.S. and overseas. We also examine how impacts vary across assumptions of future ruminant livestock productivity and ruminant stocking density in the U.S. We employ two complementary land use models—the US FABLE Calculator, an agricultural and forestry sector accounting model with high agricultural commodity representation, and GLOBIOM, a spatially explicit partial equilibrium optimization model for global land use systems. Results suggest that healthier U.S. diets that follow the Dietary Guidelines for Americans reduce agricultural and land use greenhouse gas emissions by 25–57% (approx 120–310 MtCO2e/y) and pastureland area by 28–38%. The potential emissions and land sparing benefits of U.S. agricultural productivity growth are modest within the U.S. due to the increasing comparative advantage of U.S. crops. Our findings suggest that healthy U.S. diets can significantly contribute toward meeting U.S. long-term climate goals for the land use sectors. 
    more » « less