skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Thermal Properties of the Hot Core Population in Sagittarius B2 Deep South

We report the discovery of nine new hot molecular cores in the Deep South (DS) region of Sagittarius B2 using Atacama Large Millimeter/submillimeter Array Band 6 observations. We measure the rotational temperature of CH3OH and derive the physical conditions present within these cores and the hot core Sgr B2(S). The cores show heterogeneous temperature structure, with peak temperatures between 252 and 662 K. We find that the cores span a range of masses (203–4842M) and radii (3587–9436 au). CH3OH abundances consistently increase with temperature across the sample. Our measurements show the DS hot cores are structurally similar to Galactic disk hot cores, with radii and temperature gradients that are comparable to sources in the disk. They also show shallower density gradients than disk hot cores, which may arise from the Central Molecular Zone’s higher density threshold for star formation. The hot cores have properties which are consistent with those of Sgr B2(N), with three associated with Class II CH3OH masers and one associated with an ultra-compact Hiiregion. Our sample nearly doubles the high-mass star-forming gas mass near Sgr B2(S) and suggests the region may be a younger, comparably massive counterpart to Sgr B2(N) and (M). The relationship between peak CH3OH abundance and rotational temperature traced by our sample and a selection of comparable hot cores is qualitatively consistent with predictions from chemical modeling. However, we observe constant peak abundances at higher temperatures (T≳ 250 K), which may indicate mechanisms for methanol survival that are not yet accounted for in models.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 48
["Article No. 48"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The interstellar detections of isocyanic acid (HNCO), methyl isocyanate (CH3NCO), and very recently also ethyl isocyanate (C2H5NCO) invite the question of whether or not vinyl isocyanate (C2H3NCO) can be detected in the interstellar medium. There are only low-frequency spectroscopic data (<40 GHz) available for this species in the literature, which makes predictions at higher frequencies rather uncertain, which in turn hampers searches for this molecule in space using millimeter (mm) wave astronomy.

    Aims.The aim of the present study is on one hand to extend the laboratory rotational spectrum of vinyl isocyanate to the mm wave region and on the other to search, for the first time, for its presence in the high-mass star-forming region Sgr B2, where other isocyanates and a plethora of complex organic molecules are observed.

    Methods.We recorded the pure rotational spectrum of vinyl isocyanate in the frequency regions 127.5–218 and 285–330 GHz using the Prague mm wave spectrometer. The spectral analysis was supported by high-level quantum-chemical calculations. On the astronomy side, we assumed local thermodynamic equilibrium to compute synthetic spectra of vinyl isocyanate and to search for it in the ReMoCA survey performed with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the high-mass star-forming protocluster Sgr B2(N). Additionally, we searched for the related molecule ethyl isocyanate in the same source.

    Results.Accurate values for the rotational and centrifugal distortion constants are reported for the ground vibrational states of trans and cis vinyl isocyanate from the analysis of more than 1000 transitions. We report nondetections of vinyl and ethyl isocyanate toward the main hot core of Sgr B2(N). We find that vinyl and ethyl isocyanate are at least 11 and 3 times less abundant than methyl isocyanate in this source, respectively.

    Conclusions.Although the precise formation mechanism of interstellar methyl isocyanate itself remains uncertain, we infer from existing astrochemical models that our observational upper limit for the CH3NCO:C2H5NCO ratio in Sgr B2(N) is consistent with ethyl isocyanate being formed on dust grains via the abstraction or photodissociation of an H atom from methyl isocyanate, followed by the addition of a methyl radical. The dominance of such a process for ethyl isocyanate production, combined with the absence of an analogous mechanism for vinyl isocyanate, would indicate that the ratio C2H3NCO:C2H5NCO should be less than unity. Even though vinyl isocyanate was not detected toward Sgr B2(N), the results of this work represent a significant improvement on previous low-frequency studies and will help the astronomical community to continue searching for this species in the Universe.

    more » « less
  2. Context. The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact H ii (UCHii ) regions were identified in SgrB2’s central hot cores, SgrB2(M) and SgrB2(N). Aims. Our aim is to characterize the properties of the H ii regions in the entire SgrB2 cloud. Comparing the H ii regions and the dust cores, we aim to depict the evolutionary stages of different parts of SgrB2. Methods. We use the Very Large Array in its A, CnB, and D configurations, and in the frequency band C (~6GHz) to observe the whole SgrB2 complex. Using ancillary VLA data at 22.4 GHz and ALMA data at 96 GHz, we calculated the physical parameters of the UCH ii regions and their dense gas environment. Results. We identify 54 UCHii regions in the 6 GHz image, 39 of which are also detected at 22.4 GHz. Eight of the 54 UCHii regions are newly discovered. The UCHii regions have radii between 0.006 pc and 0.04 pc, and have emission measure between 10 6 pc cm 6 and 10 9 pc cm 6 . The UCHii regions are ionized by stars of types from B0.5 to O6. We found a typical gas density of ~10 6 –10 9 cm 3 around the UCH ii regions. The pressure of the UCH ii regions and the dense gas surrounding them are comparable. The expansion timescale of these UCHii regions is determined to be ~10 4 –10 5 yr. The percentage of the dust cores that are associated with H ii regions are 33%, 73%, 4%, and 1% for SgrB2(N), SgrB2(M), SgrB2(S), and SgrB2(DS), respectively. Two-thirds of the dust cores in SgrB2(DS) are associated with outflows. Conclusions. The electron densities of the UCHii regions we identified are in agreement with that of typical UCHii regions, while the radii are smaller than those of the typical UCHii regions. The dust cores in SgrB2(M) are more evolved than in SgrB2(N). The dust cores in SgrB2(DS) are younger than in SgrB2(M) or SgrB2(N). 
    more » « less
  3. null (Ed.)
    Context. For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide has not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH 2 ). Aims. With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 to 440 GHz. Methods. Time-domain Fourier transform microwave spectroscopy under supersonic expansion conditions between 6 and 18 GHz was used to accurately measure and analyze ground-state rotational transitions with resolved hyperfine structure arising from nuclear quadrupole coupling interactions of the 14 N nucleus. We combined this technique with the frequency-domain room-temperature millimeter wave and submillimeter wave spectroscopies from 75 to 440 GHz in order to record and assign the rotational spectra in the ground state and in the low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. Results. We identified and measured more than 5500 distinct frequency lines of propiolamide in the laboratory. These lines were fitted using an effective semi-rigid rotor Hamiltonian with nuclear quadrupole coupling interactions taken into consideration. We obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. Conclusions. Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations. The comprehensive spectroscopic data presented in this paper will aid future astronomical searches. 
    more » « less
  4. Context. Glycinamide (NH 2 CH 2 C(O)NH 2 ) is considered to be one of the possible precursors of the simplest amino acid, glycine. Its only rotational spectrum reported so far has been in the centimetre-wave region on a laser-ablation generated supersonic expansion sample. Aims. The aim of this work is to extend the laboratory spectrum of glycinamide to the millimetre (mm) wave region to support searches for this molecule in the interstellar medium and to perform the first check for its presence in the high-mass star forming region Sagittarius B2(N). Methods. Glycinamide was synthesised chemically and was studied with broadband rotational spectroscopy in the 90–329 GHz region with the sample in slow flow at 50°C. Tunnelling across a low-energy barrier between two symmetry equivalent configurations of the molecule resulted in splitting of each vibrational state and many perturbations in associated rotational energy levels, requiring careful coupled state fits for each vibrational doublet. We searched for emission of glycinamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimetre/submillimetre Array towards Sgr B2(N). The astronomical spectra were analysed under the assumption of local thermodynamic equilibrium. Results. We report the first analysis of the mm-wave rotational spectrum of glycinamide, resulting in fitting – to experimental measurement accuracy – of over 1200 assigned and measured transition frequencies for the ground-state tunnelling doublet and of many lines for tunnelling doublets for two singly excited vibrational states. We also determine the precise vibrational separation in each doublet. We did not detect emission from glycinamide in the hot molecular core Sgr B2(N1S). We derived a column density upper limit of 1.5 × 10 16 cm −2 , which implies that glycinamide is at least seven times less abundant than aminoacetonitrile and 1.8 times less abundant than urea in this source. A comparison with results of astrochemical kinetics models for species related to glycinamide suggests that its abundance may be at least one order of magnitude below the upper limit obtained towards Sgr B2(N1S). This means that glycinamide emission in this source likely lies well below the spectral confusion limit in the frequency range covered by the ReMoCA survey. Conclusions. Thanks to the spectroscopic data provided by this study, the search for glycinamide in the interstellar medium can continue on a firm basis. Targetting sources with a lower level of spectral confusion, such as the Galactic Center shocked region G+0.693-0.027, may be a promising avenue. 
    more » « less
  5. Context. Numerous complex organic molecules have been detected in the universe and among them are amides, which are considered as prime models for species containing a peptide linkage. In its backbone, acrylamide (CH 2 CHC(O)NH 2 ) bears not only the peptide bond, but also the vinyl functional group that is a common structural feature in many interstellar compounds. This makes acrylamide an interesting candidate for searches in the interstellar medium. In addition, a tentative detection of the related molecule propionamide (C 2 H 5 C(O)NH 2 ) has been recently claimed toward Sgr B2(N). Aims. The aim of this work is to extend the knowledge of the laboratory rotational spectrum of acrylamide to higher frequencies, which would make it possible to conduct a rigorous search for interstellar signatures of this amide using millimeter wave astronomy. Methods. We measured and analyzed the rotational spectrum of acrylamide between 75 and 480 GHz. We searched for emission of acrylamide in the imaging spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array toward Sgr B2(N). We also searched for propionamide in the same source. The astronomical spectra were analyzed under the assumption of local thermodynamic equilibrium. Results. We report accurate laboratory measurements and analyses of thousands of rotational transitions in the ground state and two excited vibrational states of the most stable syn form of acrylamide. In addition, we report an extensive set of rotational transitions for the less stable skew conformer. Tunneling through a low energy barrier between two symmetrically equivalent configurations has been revealed for this higher-energy species. Neither acrylamide nor propionamide were detected toward the two main hot molecular cores of Sgr B2(N). We did not detect propionamide either toward a position located to the east of the main hot core, thereby undermining the recent claim of its interstellar detection toward this position. We find that acrylamide and propionamide are at least 26 and 14 times less abundant, respectively, than acetamide toward the main hot core Sgr B2(N1S), and at least 6 and 3 times less abundant, respectively, than acetamide toward the secondary hot core Sgr B2(N2). Conclusions. A comparison with results of astrochemical kinetics model for related species suggests that acrylamide may be a few hundred times less abundant than acetamide, corresponding to a value that is at least an order of magnitude lower than the observational upper limits. Propionamide may be as little as only a factor of two less abundant than the upper limit derived toward Sgr B2(N1S). Lastly, the spectroscopic data presented in this work will aid future searches of acrylamide in space. 
    more » « less