Abstract The surface magnetization of Fe3GeTe2was examined by low-energy electron microscopy (LEEM) using an off-normal incidence electron beam. We found that the 180° domain walls are of Bloch type. Temperature-dependent LEEM measurements yield a surface magnetization with a surface critical exponentβ1 = 0.79 ± 0.02. This result is consistent with surface magnetism in the 3D semi-infinite Heisenberg (β1 = 0.84 ± 0.01) or Ising (β1 = 0.78 ± 0.02) models, which is distinctly different from the bulk exponent (β= 0.34 ± 0.07). The measurements reveal the power of LEEM with a tilted beam to determine magnetic domain structure in quantum materials without the need for the use of spin-polarized electrons. Single crystal diffraction measurements reveal inversion symmetry-breaking weak peaks and yield space group P-6m2. This Fe site defect-derived loss of inversion symmetry enables the formation of skyrmions in this Fe3GeTe2crystal.
more »
« less
Directing valley-polarized emission of 3 L WS 2 by photonic crystal with directional circular dichroism
The valley degree of freedom that results from broken inversion symmetry in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) has sparked a lot of interest due to its huge potential in information processing. In this experimental work, to optically address the valley-polarized emission from three-layer (3 L) thick WS2at room temperature, we employ a SiN photonic crystal slab that has two sets of holes in a square lattice that supports directional circular dichroism engendered by delocalized guided mode resonances. By perturbatively breaking the inversion symmetry of the photonic crystal slab, we can simultaneously manipulate s and p components of the radiating field so that these resonances correspond to circularly polarized emission. The emission of excitons from distinct valleys is coupled into different radiative channels and hence separated in the farfield. This directional exciton emission from selective valleys provides a potential route for valley-polarized light emitters, which lays the groundwork for future valleytronic devices.
more »
« less
- Award ID(s):
- 2139416
- PAR ID:
- 10489714
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 32
- Issue:
- 4
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 6076
- Size(s):
- Article No. 6076
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The robust spin and momentum valley locking of electrons in two-dimensional semiconductors makes the valley degree of freedom of great utility for functional optoelectronic devices. Owing to the difference in optical selection rules for the different valleys, these valley electrons can be addressed optically. The electrons and excitons in these materials exhibit the valley Hall effect, where the carriers from specific valleys are directed to different directions under electrical or thermal bias. Here we report the optical analog of valley Hall effect, where the light emission from the valley-polarized excitons in a monolayer propagates in different directions owing to the preferential coupling of excitonic emission to the high momentum states of the hyperbolic metamaterial. The experimentally observed effects are corroborated with theoretical modeling of excitonic emission in the near field of hyperbolic media. The demonstration of the optical valley Hall effect using a bulk artificial photonic media without the need for nanostructuring opens the possibility of realizing valley-based excitonic circuits operating at room temperature.more » « less
-
Van der Waals (vdW) materials have recently attracted significant interest in the context of orientation-dependent linear and nonlinear optical properties. Recently, arsenic trisulfide (As2S3) or orpiment is identified as a new vdW layered material having anisotropic vibrational and optomechanical responses due to the reduced in-plane crystal symmetry, but its nonlinear optical response is still not well understood yet. Herein, the anisotropic third-harmonic generation (THG) response of mechanically exfoliated As2S3thin flakes is reported. The polarization-dependent evolution of THG emission from butterfly-shaped pattern to four-lobe pattern is comprehensively explored. Moreover, the third-order nonlinear susceptibility of As2S3crystal is extracted by analyzing the thickness-dependent THG emission. We anticipate that the discussed results will not only update the existing understanding on the nonlinear light-matter interaction in anisotropic vdW materials, but also promote future applications in integrated photonic circuits, on-chip nonlinear signal processing, and polarization-sensitive optical devices.more » « less
-
Abstract Atomically thin, two-dimensional, transition-metal dichalcogenide (TMD) monolayers have recently emerged as a versatile platform for optoelectronics. Their appeal stems from a tunable direct bandgap in the visible and near-infrared regions, the ability to enable strong coupling to light, and the unique opportunity to address the valley degree of freedom over atomically thin layers. Additionally, monolayer TMDs can host defect-bound localized excitons that behave as single-photon emitters, opening exciting avenues for highly integrated 2D quantum photonic circuitry. By introducing plasmonic nanostructures and metasurfaces, one may effectively enhance light harvesting, direct valley-polarized emission, and route valley index. This review article focuses on these critical aspects to develop integrated photonic and valleytronic applications by exploiting exciton–plasmon coupling over a new hybrid material platform.more » « less
-
Recent progress in the Valley Hall insulator has demonstrated a nontrivial topology property due to the distinct valley index in 2D semiconductor systems. In this work, we propose a highly tunable topological phase transition based on valley photonic crystals. The topological phase transition is realized by the inversion symmetry broken due to the refractive index change of structures consisting of optical phase change material (OPCM) with thermal excitation of different sites in a honeycomb lattice structure. Besides, simulations of light propagation at sharp corners and pseudo-spin photon coupling are conducted to quantitatively examine the topological protection. Compared with other electro-optical materials based on reconfigurable topological photonics, a wider bandwidth and greater tunability of both central bandgap frequency and topological phase transition can happen in the proposed scheme. Our platform has great potential in practical applications in lasing, light sensing, and high-contrast tunable optical filters.more » « less
An official website of the United States government
