Abstract With the increasing interest in biopolymer nanofibers for diverse applications, the characterization of these materials in the physiological environment has become of equal interest and importance. This study performs first‐time simulated body fluid (SBF) degradation and tensile mechanical analyses of blended fish gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes prepared by a high‐throughput free‐surface alternating field electrospinning. The thermally crosslinked FGEL/PCL nanofibrous materials with 84–96% porosity and up to 60 wt% PCL fraction demonstrate mass retention up to 88.4% after 14 days in SBF. The trends in the PCL crystallinity and FGEL secondary structure modification during the SBF degradation are analyzed by Fourier transform infrared spectroscopy. Tensile tests of such porous, 0.1–2.2 mm thick FGEL/PCL nanofibrous meshes in SBF reveal the ultimate tensile strength, Young's modulus, and elongation at break within the ranges of 60–105 kPa, 0.3–1.6 MPa, and 20–70%, respectively, depending on the FGEL/PCL mass ratio. The results demonstrate that FGEL/PCL nanofibrous materials prepared from poorly miscible FGEL and PCL can be suitable for selected biomedical applications such as scaffolds for skin, cranial cruciate ligament, articular cartilage, or vascular tissue repair.
more »
« less
Alternating field electrospinning of blended fish gelatin/poly(ε-caprolactone) nanofibers
Blended nanofibrous biomaterials from natural and synthetic sources show promise for better biointegration. This study explores high-yield alternating field electrospinning (AFES) of blended cold-water fish skin gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes with up to 30 wt% PCL at 7.8–14.4 g/h fiber productivity, depending on the composition. FGEL/PCL nanofibers reveal smooth surface morphology and 237–313 nm average diameters after thermal crosslinking. FTIR analysis indicated little FGEL/PCL interaction and notable changes in PCL crystallinity in the crosslinked nanofibers. A 14-days in-vitro analysis shows good cellular viability and nanofibrous FGEL/PCL mesh stability. Results demonstrate that AFES provides efficient, scalable production of blended FGEL/PCL nanofibrous biomaterials with suitable characteristics.
more »
« less
- Award ID(s):
- 1852207
- PAR ID:
- 10489732
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materials Letters
- Volume:
- 341
- Issue:
- C
- ISSN:
- 0167-577X
- Page Range / eLocation ID:
- 134284
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nanofibers made by blending natural and synthetic biopolymers have shown promise for better mechanical stability, ECM morphology mimicry, and cellular interaction of such materials. With the evolution of production methods of nanofibers, alternating field electrospinning (a.k.a. alternating current (AC) electrospinning) demonstrates a strong potential for scalable and sustainable fabrication of nanofibrous materials. This study focuses on AC‐electrospinning of poorly miscible blends of gelatin from cold water fish skin (FGEL) and polycaprolactone (PCL) in a range of FGEL/PCL mass ratios from 0.9:0.1 to 0.4:0.6 in acetic acid single‐solvent system. The nanofiber productivity rates of 7.8–19.0 g/h were obtained using a single 25 mm diameter dish‐like spinneret, depending on the precursor composition. The resulting nanofibrous meshes had 94%–96% porosity and revealed the nanofibers with 200–750 nm diameters and smooth surface morphology. The results of FTIR, XRD, and water contact angle analyses have shown the effect of FGEL/PCL mass ratio on the changes in the material wettability, PCL crystallinity and orientation of PCL crystalline regions, and secondary structure of FGEL in as‐spun and thermally crosslinked materials. Preliminary in vitro tests with 3 T3 mouse fibroblasts confirmed favorable and tunable cell attachment, proliferation, and spreading on all tested FGEL/PCL nanofibrous meshes.more » « less
-
The study delves into the kinetics of non-isothermal crystallization of Poly (ɛ-caprolactone) (PCL) and MgO-incorporated PCL nanofibers with varying cooling rates. Differential Scanning Calorimetry (DSC-3) was used to acquire crystallization information and investigate the kinetics behavior of the two types of nanofibers under different cooling rates ranging from 0.5–5 K/min. The results show that the crystallization rate decreases at higher crystallization temperatures. Furthermore, the parameters of non-isothermal crystallization kinetics were investigated via several mathematical models, including Jeziorny and Mo’s models. Mo’s approach was suitable to describe the nanofibers’ overall non-isothermal crystallization process. In addition, the Kissinger and Friedman methods were used to calculate the activation energy of bulk-PCL, PCL, and MgO-PCL nanofibers. The result showed that the activation energy of bulk-PCL was comparatively lower than that of nanofibers. The investigation of the kinetics of crystallization plays a crucial role in optimizing manufacturing processes and enhancing the overall performance of nanofibers.more » « less
-
Electrospun fibrous scaffolds made from polymers such as polycaprolactone (PCL) have been used in drug delivery and tissue engineering for their viscoelasticity, biocompatibility, biodegradability, and tunability. Hydrophobicity and the prolonged degradation of PCL causes inhibition of the natural tissue-remodeling processes. Poliglecaprone (PGC), which consists of PCL and Poly (glycolic acid) (PGA), has better mechanical properties and a shorter degradation time compared to PCL. A blend between PCL and PGC called PPG can give enhanced shared properties for biomedical applications. In this study, we fabricated a blend of PCL and PGC nanofibrous scaffold (PPG) at different ratios of PGC utilizing electrospinning. We studied the physicochemical and biological properties, such as morphology, crystallinity, surface wettability, degradation, surface functionalization, and cellular compatibility. All PPG scaffolds exhibited good uniformity in fiber morphology and improved mechanical properties. The surface wettability and degradation studies confirmed that increasing PGC in the PPG composites increased hydrophilicity and scaffold degradation respectively. Cell viability and cytotoxicity results showed that the scaffold with PGC was more viable and less toxic than the PCL-only scaffolds. PPG fibers were successfully coated with polydopamine (PDA) and collagen to improve degradation, biocompatibility, and bioactivity. The nanofibrous scaffolds synthesized in this study can be utilized for tissue engineering applications such as for regeneration of human articular cartilage regeneration and soft bones.more » « less
-
Post-drawn PCL nanofibers can be molecularly tuned to have a variety of mechanical properties and drug release profiles depending on the temperature and time of annealing, which has implications for regenerative medicine and drug delivery applications. Post-drawing polycaprolactone (PCL) nanofibers has previously been demonstrated to drastically increase their mechanical properties. Here the effects of annealing on post-drawn PCL nanofibers are characterized. It is shown that room temperature storage and in vivo temperatures increase crystallinity significantly on the order of weeks, and that high temperature annealing near melt significantly increases crystallinity and molecular orientation on the order of minutes. The kinetics of crystallization were assessed using an anneal and quench approach. High temperature annealing also increased the ultimate tensile strength and toughness of the fibers and changed the release profile of a model drug absorbed in PCL nanofibers from first-order to zero-order kinetics.more » « less