skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Biomass accumulation in trees and downed wood in northern hardwood forests: Repeated measures of a successional chronosequence in New Hampshire, USA
Successional, second-growth forests dominate much of eastern North America; thus, patterns of biomass accumulation in standing trees and downed wood are of great interest for forest management and carbon accounting. The timing and magnitude of biomass accumulation in later stages of forest development are not fully understood. We applied a “chronosequence with resampling” approach to characterize live and dead biomass accumulation in 16 northern hardwood stands in the White Mountains of New Hampshire. Live aboveground biomass increased rapidly and leveled off at about 350 Mg/ha by 145 years. Downed wood biomass fluctuated between 10 and 35 Mg/ha depending on disturbances. The species composition of downed wood varied predictably with overstory succession, and total mass of downed wood increased with stand age and the concomitant production of larger material. Fine woody debris peaked at 30–50 years during the self-thinning of early successional species, notably pin cherry. Our data support a model of northern hardwood forest development wherein live tree biomass accumulates asymptotically and begins to level off at ∼140–150 years. Still, 145-year-old second-growth stands differed from old-growth forests in their live ( p = 0.09) and downed tree diameter distributions ( p = 0.06). These patterns of forest biomass accumulation would be difficult to detect without a time series of repeated measurements of stands of different ages.  more » « less
Award ID(s):
1637685
PAR ID:
10489796
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Canadian Science Publishing
Date Published:
Journal Name:
Canadian Journal of Forest Research
ISSN:
0045-5067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Standing trees and downed wood were inventoried in all of the chronosequence stands in the White Mountains, New Hampshire to characterize biomass. Live and standing dead trees were inventoried in the chronosequence stands in 1994, 2004, 2012, and 2021. Coarse (≥ 7.6 cm diameter) and fine woody debris (3.0 – 7.6 cm) were inventoried at the same stands in 2004 and 2020. Twigs (FWD < 3.0 cm) were inventoried in 2004 and 2020. The Bowl and Mt. Pond old-growth sites were inventoried (standing trees and downed wood) in 2021. 
    more » « less
  2. Functional balance theory predicts that plants will allocate less carbon belowground when the availability of nutrients is elevated. We tested this prediction in two successional northern hardwood forest stands by quantifying fine root biomass and growth after 5–7 years of treatment in a nitrogen (N) x phosphorus (P) factorial addition experiment. We quantified root responses at two different levels of treatment: the whole-plot scale fertilization and small-patch scale fertilization of ingrowth cores. Fine root biomass was higher in plots receiving P, and fine root growth was highest in plots receiving both N and P. Thus, belowground productivity did not decrease in response to long-term addition of nutrients. We did not find conclusive evidence that elevated availability of one nutrient at the plot scale induced foraging for the other nutrient at the core scale, or that foraging for nutrients at the core scale responded to addition of limiting nutrients. Our observations suggest NP co-limitation of fine root growth and indicate complex interactions of N and P affecting aboveground and belowground production in early successional northern hardwood forest ecosystems. 
    more » « less
  3. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. This data set includes phosphate, nitrate and ammonium availability measured using resin exchange strips. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1 Goswami S, Fisk MC, Vadeboncoeur MA, Johnston M, Yanai RD, and Fahey TJ. 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99: 438-449. https://doi.org/10.1002/ecy.2100 Shan S, Fisk MC, Fahey TJ. 2018. Contrasting effects of N on rhizosphere processes in two northern hardwood species. Soil Biology and Biochemistry 126: 219-227. https://doi.org/10.1016/j.soilbio.2018.09.007 Shan S, Devens H, Fahey TJ, Yanai RD, Fisk MC. 2022. Fine root growth increases in response to nitrogen addition in phosphorus-limited northern hardwood forests. Ecosystems, https://doi.org/10.1007/s10021-021-00735-4 Gonzales KE, Yanai RD, Fahey TJ, Fisk MC. 2023. Evidence for P limitation in eight northern hardwood stands: Foliar concentrations and resorption by three tree species in a factorial N by P addition experiment. Forest Ecology and Management 529: 120696. https://doi.org/10.1016/j.foreco.2022.120696 Li S, Fisk MC, Yanai RD, Fahey TJ. 2023. Co-limitation of root growth by nitrogen and phosphorus in early successional northern hardwood forest. Ecosystems. https://10.1007/s10021-023-00869-7 
    more » « less
  4. Abstract Despite much interest in relationships among carbon and water in forests, few studies assess how carbon accumulation scales with water use in forested watersheds with varied histories. This study quantified tree growth, water use efficiency, and carbon‐water tradeoffs of young versus mature/old‐growth forest in three small (13–22 ha) watersheds in the H.J. Andrews Experimental Forest, Oregon, USA. To quantify and scale carbon‐water tradeoffs from trees to watersheds, tree‐ring records and greenness and wetness indices from remote sensing were combined with long‐term vegetation, climate, and streamflow data from young forest watersheds (trees ∼45 years of age) and from a mature/old‐growth forest watershed (trees 150–500 years of age). Biomass production was closely related to water use; water use efficiency (basal area increment per unit of evapotranspiration) was lower; and carbon‐water tradeoffs were steeper in young forest plantations compared with old‐growth forest for which the tree growth record begins in the 1850s. Greenness and wetness indices from Landsat imagery were not significant predictors of streamflow or tree growth over the period 1984 to 2017, and soil C and N did not differ significantly among watersheds. Multiple lines of evidence show that mature and old‐growth forest watersheds store and accumulate more carbon, are more drought resistant, and better sustain water availability compared to young forests. These results provide a basis for reconstructions and predictions that are potentially broadly applicable, because first‐order watersheds occupy 80%–90% of large river basins and study watersheds are representative of forest history in the Pacific Northwest region. 
    more » « less
  5. Abstract Western US forests represent a carbon sink that contributes to meeting regional and global greenhouse gas targets. Forest thinning is being implemented as a strategy for reducing forest vulnerability to disturbance, including mortality from fire, insects, and drought, as well as protecting human communities. However, the terrestrial carbon balance impacts of thinning remain uncertain across regions, spatiotemporal scales, and treatment types. Continuous and in situ long‐term measurements of partial harvest impacts to stand‐scale carbon and water cycle dynamics are nonetheless rare. Here, we examine post‐thinning carbon and water flux impacts in a young ponderosa pine forest in Northern Idaho. We examine in situ stock and flux impacts during the 3 years after treatment as well as simulate the forest sector carbon balance through 2050, including on and off‐site net emissions. During the observation period, increases in tree‐scale net primary production (NPP) and water use persistence through summer drought did not overcome the impacts of density reduction, leading to 45% annual reductions of NPP. Growth duration remained constrained by summer drought in control and thinned stands. Ecosystem model and life cycle assessment estimates demonstrated a net forest sector carbon deficit relative to control stands of 27.0 Mg C ha−1in 2050 due to emissions from dead biomass pools despite increases to net ecosystem production. Our results demonstrate dynamics resulting in carbon losses from forest thinning, providing a baseline with which to inform landscape‐scale modeling and assess tradeoffs between harvest losses and potential gains from management practices. 
    more » « less