skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alcohol induced behavioral and immune perturbations are attenuated by activation of CB2 cannabinoid receptors
The endocannabinoidome (eCBome) is the expanded endocannabinoid system (ECS) and studies show that there is a link between this system and how it modulates alcohol induced neuroinflammation. Using conditional knockout (cKO) mice with selective deletion of cannabinoid type 2 receptors (CB2Rs) in dopamine neurons (DAT-Cnr2) and in microglia (Cx3Cr1-Cnr2), we investigated how CB2Rs modulate behavioral and neuroinflammation induced by alcohol. Behavioral tests including locomotor and wheel running activity, rotarod performance test, and alcohol preference tests were used to evaluate behavioral changes induced by alcohol. Using ELISA assay, we investigated the level of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1α (IL-1α), and interleukin-1β (IL-1β) in the hippocampus of mice. The findings demonstrated that locomotor activity, wheel running, and rotarod performance activities were significantly affected by cell-type specific deletion of CB2Rs in dopamine neurons and microglia. The non-selective CB2R agonist, WIN 55,212-2, reduced alcohol preference in the wild type and cell-type specific CB2R cKO mice. In addition, the result showed that cell-type specific deletion of CB2Rsper seand administration of alcohol to CB2R cKO mice increased the expression of proinflammatory cytokines in the hippocampus. These findings suggest the involvement of CB2Rs in modulating behavioral and immune alterations induced by alcohol.  more » « less
Award ID(s):
1909824
PAR ID:
10489798
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Advances in Drug and Alcohol Research
Volume:
3
ISSN:
2674-0001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Chronic brain hypoperfusion is the primary cause of vascular dementia and has been implicated in the development of white matter disease and lacunar infarcts. Cerebral hypoperfusion leads to a chronic state of brain inflammation with immune cell activation and production of pro-inflammatory cytokines, including IL-1β. In the present study, we induced chronic, progressive brain hypoperfusion in mice using ameroid constrictor, arterial stenosis (ACAS) surgery and tested the efficacy of an IL-1β antibody on the resulting brain damage. We observed that ACAS surgery causes a reduction in cerebral blood flow (CBF) of about 30% and grey and white matter damage in and around the hippocampus. The IL-1β antibody treatment did not significantly affect CBF but largely eliminated grey matter damage and reduced white matter damage caused by ACAS surgery. Over the course of hypoperfusion/injury, grip strength, coordination, and memory-related behavior were not significantly affected by ACAS surgery or antibody treatment. We conclude that antibody neutralization of IL-1β is protective from the brain damage caused by chronic, progressive brain hypoperfusion. 
    more » « less
  2. Neuroinflammation is one of the hallmarks contributing to Parkinson's disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular α‐synuclein (aSYN) binding to the cluster of differentation 36 (CD36) receptor. Herein, CD36‐binding nanoparticles (NPs) containing tartaric acid–based amphiphilic macromolecules (AMs) are rationally designed to inhibit this aSYN–CD36 binding. In silico docking reveals that four AMs with varying alkyl side chain lengths present differential levels of CD36 binding affinity and that an optimal alkyl chain length promotes the strongest inhibitory activity toward aSYN–CD36 interactions. In vitro competitive binding assays indicate that the inhibitory activity of AM‐based NPs plateaus at intermediate side chain lengths of 12 and 18 carbons, supporting the in silico docking predictions. These intermediate‐length AM NPs also has significantly stronger effects on reducing aSYN internalization and inhibiting proinflammatory molecules tumor necrosis factor α (TNF‐α) and nitric oxide from aSYN‐challenged microglia. All four NPs modulate the gene expression of aSYN‐challenged microglia, downregulating proinflammatory genes TNF, interleukin 6 (IL‐6), and IL‐1β, and upregulating anti‐inflammatory genes transforming growth factor β (TGF‐β) and Arg1 expression. Herein, overall, a novel polymeric nanotechnology platform is represented that can be used to modulate aSYN‐induced microglial activation. 
    more » « less
  3. :Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a conditioncharacterized by a subtle cognitive decline that may precede the development of dementia. Theunderlying mechanisms connecting diabetes and MCI involve complex interactions between metabolicdysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes andMCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes,can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha(TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of whichcan exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved inregulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and releaseTNF-α from its membrane-bound precursor and cause it to become activated. These processes, inturn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, andJAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetesand neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease,suggesting a shared mechanism and implicating inflammation as a possible contributor to muchbroader forms of pathology and pointing to a possible link between inflammation and the emergenceof MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associatedmild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17and associated pathways may influence the emergence of mild cognitive impairment. 
    more » « less
  4. Microglia transform in response to changes in sensory or neural activity, such as sensory deprivation. However, little is known about how specific frequencies of neural activity, or brain rhythms, affect microglia and cytokine signaling. Using visual noninvasive flickering sensory stimulation (flicker) to induce electrical neural activity at 40 hertz, within the gamma band, and 20 hertz, within the beta band, we found that these brain rhythms differentially affect microglial morphology and cytokine expression in healthy animals. Flicker induced expression of certain cytokines independently of microglia, including interleukin-10 and macrophage colony-stimulating factor. We hypothesized that nuclear factor κB (NF-κB) plays a causal role in frequency-specific cytokine and microglial responses because this pathway is activated by synaptic activity and regulates cytokines. After flicker, phospho–NF-κB colabeled with neurons more than microglia. Inhibition of NF-κB signaling down-regulated flicker-induced cytokine expression and attenuated flicker-induced changes in microglial morphology. These results reveal a mechanism through which brain rhythms affect brain function by altering microglial morphology and cytokines via NF-κB. 
    more » « less
  5. Gordon Holmes syndrome (GHS) is a neurological disorder associated with neuroendocrine, cognitive, and motor impairments with corresponding neurodegeneration. Mutations in the E3 ubiquitin ligaseRNF216are strongly linked to GHS. Previous studies show that deletion ofRnf216in mice led to sex-specific neuroendocrine dysfunction due to disruptions in the hypothalamic–pituitary–gonadal axis. To address RNF216 action in cognitive and motor functions, we testedRnf216knock-out (KO) mice in a battery of motor and learning tasks for a duration of 1 year. Although male and female KO mice did not demonstrate prominent motor phenotypes, KO females displayed abnormal limb clasping. KO mice also showed age-dependent strategy and associative learning impairments with sex-dependent alterations of microglia in the hippocampus and cortex. Additionally, KO males but not females had more negative resting membrane potentials in the CA1 hippocampus without any changes in miniature excitatory postsynaptic current (mEPSC) frequencies or amplitudes. Our findings show that constitutive deletion ofRnf216alters microglia and neuronal excitability, which may provide insights into the etiology of sex-specific impairments in GHS. 
    more » « less