skip to main content


This content will become publicly available on January 26, 2025

Title: Much more to explore with an oxidation state of nearly four: Pr valence instability in intermetallic m -Pr 2 Co 3 Ge 5

For some intermetallic compounds containing lanthanides, structural transitions can result in intermediate electronic states between trivalency and tetravalency; however, this is rarely observed for praseodymium compounds. The dominant trivalency of praseodymium limits potential discoveries of emergent quantum states in itinerant 4f1systems accessible using Pr4+-based compounds. Here, we use in situ powder x-ray diffraction and in situ electron energy-loss spectroscopy (EELS) to identify an intermetallic example of a dominantly Pr4+state in the polymorphic system Pr2Co3Ge5. The structure-valence transition from a nearly full Pr4+electronic state to a typical Pr3+state shows the potential of Pr-based intermetallic compounds to host valence-unstable states and provides an opportunity to discover previously unknown quantum phenomena. In addition, this work emphasizes the need for complementary techniques like EELS when evaluating the magnetic and electronic properties of Pr intermetallic systems to reveal details easily overlooked when relying on bulk magnetic measurements alone.

 
more » « less
Award ID(s):
1904361
NSF-PAR ID:
10489800
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
4
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The crystal structure, electron energy-loss spectroscopy (EELS), heat capacity, and anisotropic magnetic and resistivity measurements are reported for Sn flux grown single crystals of orthorhombic Pr2Co3Ge5(U2Co3Si5-type,Ibam). Our findings show thato-Pr2Co3Ge5hosts nearly trivalent Pr ions, as evidenced by EELS and fits to temperature dependent magnetic susceptibility measurements. Complex magnetic ordering with a partially spin-polarized state emerges nearTsp= 32 K, with a spin reconfiguration transition nearTM= 15 K. Heat capacity measurements show that the phase transitions appear as broad peaks in the vicinity ofTspandTM. The magnetic entropy further reveals that crystal electric field splitting lifts the Hund’s rule degeneracy at low temperatures. Taken together, these measurements show that Pr2Co3Ge5is an environment for complexfstate magnetism with potential strongly correlated electron states.

     
    more » « less
  2. Abstract

    Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

     
    more » « less
  3. The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (1-Pr(NP*)) with AgI at −35 °C. The Pr 4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex. 
    more » « less
  4. Abstract

    Heat capacities and enthalpies of formation of BaGd2O4were determined by high‐temperature differential scanning calorimetry and high‐temperature oxide melt solution calorimetry, respectively. Thermodynamic stability of BaLn2O4compounds increases with decreasing Ln3+ionic radius. Previously reported data on BaNd2O4and BaSm2O4corroborate this trend. Missing data for compounds in BaO–Ln2O3(Ln = La, Pr, Eu, Er) systems were estimated from established relations, thermodynamic assessment was performed, and binary phase diagrams were calculated.

     
    more » « less
  5. New optical materials with efficient luminescence and scintillation properties have drawn a great deal of attention due to the demand for optoelectronic devices and medical theranostics. Their nanomaterials are expected to reduce the cost while incrementing the efficiency for potential lighting and scintillator applications. In this study, we have developed praseodymium-doped lanthanum hafnate (La 2 Hf 2 O 7 :Pr 3+ ) pyrochlore nanoparticles (NPs) using a combined co-precipitation and relatively low-temperature molten salt synthesis procedure. XRD and Raman investigations confirmed ordered pyrochlore phase for the as-synthesized undoped and Pr 3+ -doped La 2 Hf 2 O 7 NPs. The emission profile displayed the involvement of both the 3 P 0 and 1 D 2 states in the photoluminescence process, however, the intensity of the emission from the 1 D 2 states was found to be higher than that from the 3 P 0 states. This can have a huge implication on the design of novel red phosphors for possible application in solid-state lighting. As a function of the Pr 3+ concentration, we found that the 0.1%Pr 3+ doped La 2 Hf 2 O 7 NPs possessed the strongest emission intensity with a quantum yield of 20.54 ± 0.1%. The concentration quenching, in this case, is mainly induced by the cross-relaxation process 3 P 0 + 3 H 4 → 1 D 2 + 3 H 6 . Emission kinetics studies showed that the fast decaying species arise because of the Pr 3+ ions occupying the Hf 4+ sites, whereas the slow decaying species can be attributed to the Pr 3+ ions occupying the La 3+ sites in the pyrochlore structure of La 2 Hf 2 O 7 . X-ray excited luminescence (XEL) showed a strong red-light emission, which showed that the material is a promising scintillator for radiation detection. In addition, the photon counts were found to be much higher when the NPs are exposed to X-rays when compared to ultraviolet light. Altogether, these La 2 Hf 2 O 7 :Pr 3+ NPs have great potential as a good down-conversion phosphor as well as scintillator material. 
    more » « less