skip to main content


Title: Exploring the optical properties of La 2 Hf 2 O 7 :Pr 3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications
New optical materials with efficient luminescence and scintillation properties have drawn a great deal of attention due to the demand for optoelectronic devices and medical theranostics. Their nanomaterials are expected to reduce the cost while incrementing the efficiency for potential lighting and scintillator applications. In this study, we have developed praseodymium-doped lanthanum hafnate (La 2 Hf 2 O 7 :Pr 3+ ) pyrochlore nanoparticles (NPs) using a combined co-precipitation and relatively low-temperature molten salt synthesis procedure. XRD and Raman investigations confirmed ordered pyrochlore phase for the as-synthesized undoped and Pr 3+ -doped La 2 Hf 2 O 7 NPs. The emission profile displayed the involvement of both the 3 P 0 and 1 D 2 states in the photoluminescence process, however, the intensity of the emission from the 1 D 2 states was found to be higher than that from the 3 P 0 states. This can have a huge implication on the design of novel red phosphors for possible application in solid-state lighting. As a function of the Pr 3+ concentration, we found that the 0.1%Pr 3+ doped La 2 Hf 2 O 7 NPs possessed the strongest emission intensity with a quantum yield of 20.54 ± 0.1%. The concentration quenching, in this case, is mainly induced by the cross-relaxation process 3 P 0 + 3 H 4 → 1 D 2 + 3 H 6 . Emission kinetics studies showed that the fast decaying species arise because of the Pr 3+ ions occupying the Hf 4+ sites, whereas the slow decaying species can be attributed to the Pr 3+ ions occupying the La 3+ sites in the pyrochlore structure of La 2 Hf 2 O 7 . X-ray excited luminescence (XEL) showed a strong red-light emission, which showed that the material is a promising scintillator for radiation detection. In addition, the photon counts were found to be much higher when the NPs are exposed to X-rays when compared to ultraviolet light. Altogether, these La 2 Hf 2 O 7 :Pr 3+ NPs have great potential as a good down-conversion phosphor as well as scintillator material.  more » « less
Award ID(s):
1710160
NSF-PAR ID:
10098127
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
42
Issue:
12
ISSN:
1144-0546
Page Range / eLocation ID:
9381 to 9392
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formation of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission. 
    more » « less
  2. Abstract

    Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7(LZO) and La2Hf2O7(LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ions. Based on our earlier work, LHO‐based nanophosphors display higher photo‐ and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO‐based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+‐doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays.

     
    more » « less
  3. The design and development of efficient and stable nuclear waste hosts has drawn intensive interest for long-lived lanthanides and actinides. A detailed investigation of their structure and potential structural evolution are crucial. In this study, we have synthesized lanthanum hafnate La 2 Hf 2 O 7 nanoparticles (NPs) doped with uranium at different concentrations (0–10%) and investigated their structural transition. We have discovered that in our La 2 Hf 2 O 7 :U NPs, the uranium dopants are stabilized at both U 4+ and U 6+ oxidation states in which the U 6+ oxidation state exists in octahedral uranate UO 6 6− form. We also confirmed that the U 4+ ions substituted the Hf 4+ ions with a lifetime of ∼1.0 μs and the UO 6 6− ions resided at the La 3+ sites with a lifetime of ∼9.0 μs. More interestingly, the proportion of the U 4+ ions in the La 2 Hf 2 O 7 :U NPs was higher than that of the UO 6 6− ions at low doping level, but at the doping level higher than 2.5%, the fraction of the UO 6 6− ions was greater than that of the U 4+ ions. Furthermore, we studied the structural phase transformation from order pyrochlore to cotunnite of these La 2 Hf 2 O 7 :U NPs with increasing uranium doping level, and found that ordered pyrochlore phase favors the U 4+ ions whereas disordered cotunnite phase favors the UO 6 6− ions. We further used in situ Raman spectroscopy to confirm the reversible cotunnite to pyrochlore phase transformation of the La 2 Hf 2 O 7 :10%U NPs at 900 °C. Therefore, this work demonstrated the successful development of uranium doped La 2 Hf 2 O 7 NPs and thorough characterization of the fundamental spectra of uranium ions, doping induced phase transformation, and structure–optical property correlation. 
    more » « less
  4. Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications. 
    more » « less
  5. Erbium lanthanum titanate glasses were prepared by levitation melting for the spectroscopic study of ways to promote the mid-infrared fluorescence. Two series of heavily erbium doped glasses (15 wt%) were prepared with the addition of either Pr3+or Nd3+in amounts relative to Er3+of 0.05, 0.1, and 0.2. Both ions quench the lower Er3+laser level with the Pr3+doing so more rapidly. Although high co-dopant concentrations result in higher energy transfer, as clearly evidenced in upconversion and downconversion fluorescence measurements, the mid-infrared lifetime also suffers a reduction and, therefore, a balance must be struck in the co-dopant concentration. Lifetime and spectral measurements indicate that, at a fixed relative co-dopant amount, Pr3+is more effective than Nd3+at removing the bottleneck of the Er3+4I13/2level. Moreover, consideration of the lifetimes alongside the absorption data of the individual ions indicates that despite the large absorption cross-section of Nd3+at 808 nm, the concentration needed to yield more absorbed power than utilizing direct 976 nm excitation of Er3+results in unfavorable lifetimes of the mid-infrared transition. In the end, Pr3+prevails as the superior co-dopant in terms of the effects on fluorescence lifetimes as well as potential laser system design considerations. In a unique self-doping approach, a reducing melt atmosphere of Ar instead of O2creates a small fraction of Ti3+. In 5Er2O3-12La2O3-83TiO2glass, the presence of Ti3+quenches the4I13/2emission about 2.6 times more than the4I11/2when lifetimes are compared to an O2melt environment. As an additional means of increasing the mid-infrared emission, the effect of temperature on the mid- and near- infrared lifetimes of a lightly doped lanthanum titanate composition is investigated between 77-300 K. The mid-infrared lifetime increases by ∼30% while the near-infrared lifetime increases by ∼10%, which suggests in addition to co-doping, active cooling of the gain media will further enhance performance.

     
    more » « less