skip to main content


This content will become publicly available on February 1, 2025

Title: Bioactive Polyurethane–Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering

Polyurethanes (PUs) are a highly adaptable class of biomaterials that are among some of the most researched materials for various biomedical applications. However, engineered tissue scaffolds composed of PU have not found their way into clinical application, mainly due to the difficulty of balancing the control of material properties with the desired cellular response. A simple method for the synthesis of tunable bioactive poly(ethylene glycol) diacrylate (PEGDA) hydrogels containing photocurable PU is described. These hydrogels may be modified with PEGylated peptides or proteins to impart variable biological functions, and the mechanical properties of the hydrogels can be tuned based on the ratios of PU and PEGDA. Studies with human cells revealed that PU–PEG blended hydrogels support cell adhesion and viability when cell adhesion peptides are crosslinked within the hydrogel matrix. These hydrogels represent a unique and highly tailorable system for synthesizing PU-based synthetic extracellular matrices for tissue engineering applications.

 
more » « less
Award ID(s):
1700351 1827820
NSF-PAR ID:
10489810
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Gels
Volume:
10
Issue:
2
ISSN:
2310-2861
Page Range / eLocation ID:
108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogels have gained interest for use in tissue regeneration and wound healing because of their absorbing and swelling properties as well as their ability to mimic the natural extracellular matrix. Their use in wound healing specifically may be in the form of a patch or wound dressing or they may be administered within the wound bed as a filler, gel in situ, to promote healing. Thiolated hyaluronic acid‐polyethylene diacrylate (tHA‐PEGDA) hydrogels are ideal for this purpose due to their short gelation times at physiological temperature and pH. But these hydrogels alone are not enough and require added components to gain bioactivity. In this work, RGD adhesion peptides and an antivascular endothelial growth factor receptor‐2 (VEGF‐R2) DNA aptamer are incorporated into a tHA‐PEGDA hydrogel to make a bifunctional hyaluronic acid hydrogel. RGD peptides promote attachment and growth of cells while the anti‐VEGF‐R2 DNA aptamer seems to improve cell viability, induce cell migration, and spur the onset of angiogenesis by tube formation by endothelial cells. This bifunctional hydrogel supports cell culture and has improved biological properties. The data suggest that these hydrogels can be used for advanced tissue regeneration applications such as in wound healing.

     
    more » « less
  2. Abstract

    The incorporation of a secondary network into traditional single‐network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one‐pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free‐radical crosslinking of methacrylate‐modified hyaluronic acid (HA) to form the primary network and ii) thiol–ene crosslinking of norbornene‐modified HA with thiolated guest–host assemblies of adamantane and β‐cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof‐of‐concept, the IPN hydrogels are implemented as low‐viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.

     
    more » « less
  3. Hydrogels have been used for many applications in tissue engineering and regenerative medicine due to their versatile material properties and similarities to the native extracellular matrix. Poly (ethylene glycol) diacrylate (PEGDA) is an ionic electroactive polymer (EAP), a material that responds to an electric field with a change in size or shape while in an ionic solution, that may be used in the development of hydrogels. In this study, we have investigated a positively charged EAP that can bend without the need of external ions. PEGDA was modified with the positively charged molecule 2‐(methacryloyloxy)ethyl‐trimethylammonium chloride (MAETAC) to provide its own positive ions. This hydrogel was then characterized and optimized for bending and cellular biocompatibility with C2C12 mouse myoblast cells. Studies show that the polymer responds to an electric field and supports C2C12 viability.

     
    more » « less
  4. Kakehashi, Rie ; Yamashita, Yuji (Ed.)

    Multicomponent interpenetrating polymer network (mIPN) hydrogels are promising tissue-engineering scaffolds that could closely resemble key characteristics of native tissues. The mechanical and biochemical properties of mIPNs can be finely controlled to mimic key features of target cellular microenvironments, regulating cell-matrix interactions. In this work, we fabricated hydrogels made of collagen type I (Col I), fibrin, hyaluronic acid (HA), and poly (ethylene glycol) diacrylate (PEGDA) using a network-by-network fabrication approach. With these mIPNs, we aimed to develop a biomaterial platform that supports the in vitro culture of human astrocytes and potentially serves to assess the effects of the abnormal deposition of fibrin in cortex tissue and simulate key aspects in the progression of neuroinflammation typically found in human pathologies such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and tissue trauma. Our resulting hydrogels closely resembled the complex modulus of AD human brain cortex tissue (~7.35 kPa), promoting cell spreading while allowing for the modulation of fibrin and hyaluronic acid levels. The individual networks and their microarchitecture were evaluated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Human astrocytes were encapsulated in mIPNs, and negligible cytotoxicity was observed 24 h after the cell encapsulation.

     
    more » « less
  5. Abstract

    Hydrogels have emerged as prototypical stimuli‐responsive materials with potential applications in soft robotics, microfluidics, tissue engineering, and adaptive optics. To leverage the full potential of these materials, fabrication techniques capable of simultaneous control of microstructure, device architecture, and interfacial stability, that is, adhesion of hydrogel components to support substrates, are needed. A universal strategy for the microfabrication of hydrogel‐based devices with robust substrate adhesion amenable to use in liquid environments would enable numerous applications. This manuscript reports a general approach for the facile production of covalently attached, ordered arrays of microscale hydrogels (microgels) on silicone supports. Specifically, silicone‐based templates are used to: i) drive mechanical assembly of prepolymer droplets into well‐defined geometries and morphologies, and ii) present appropriate conjugation moieties to fix gels in place during photoinitiated crosslinking via a “graft from” polymerization scheme. Automated processing enabled rapid microgel array production for characterization, testing, and application. Furthermore, the stimuli‐responsive microlensing properties of these arrays, via contractile modulated refractive index, are demonstrated. This process is directly applicable to the fabrication of adaptive optofluidic systems and can be further applied to advanced functional systems such as soft actuators and robotics, and 3D cell culture technologies.

     
    more » « less