Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical‐based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water‐soluble cyclopentadienone‐norbornadiene (CPD‐NBD) adduct is disclosed as a diene photocage for radical‐free Diels‐Alder photopatterning. We show that this scalable CPD‐NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD‐NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.
This content will become publicly available on February 23, 2024
Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical‐based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water‐soluble cyclopentadienone‐norbornadiene (CPD‐NBD) adduct is disclosed as a diene photocage for radical‐free Diels‐Alder photopatterning. We show that this scalable CPD‐NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD‐NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.
more » « less- NSF-PAR ID:
- 10401124
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 16
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Patterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially‐encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol‐yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter‐scale areas using mask‐free digital photolithography. Sequence‐specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein–DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially‐encoded cellular signaling environments.
-
Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.
-
Abstract Stimuli‐responsive hydrogels with programmable shapes produced by defined patterns of particles are of great interest for the fabrication of small‐scale soft actuators and robots. Patterning the particles in the hydrogels during fabrication generally requires external magnetic or electric fields, thus limiting the material choice for the particles. Acoustically driven particle manipulation, however, solely depends on the acoustic impedance difference between the particles and the surrounding fluid, making it a more versatile method to spatially control particles. Here, an approach is reported by combining direct acoustic force to align photothermal particles and photolithography to spatially immobilize these alignments within a temperature‐responsive poly(N‐isopropylacrylamide) hydrogel to trigger shape deformation under temperature change and light exposure. The spatial distribution of particles can be tuned by the power and frequency of the acoustic waves. Specifically, changing the spacing between the particle patterns and position alters the bending curvature and direction of this composite hydrogel sheet, respectively. Moreover, the orientation (i.e., relative angle) of the particle alignments with respect to the long axis of laser‐cut hydrogel strips governs the bending behaviors and the subsequent shape deformation by external stimuli. This acousto‐photolithography provides a means of spatiotemporal programming of the internal heterogeneity of composite polymeric systems.
-
Abstract Cyclobutane pyrimidine dimer (CPD) is a photoproduct formed by two stacked pyrimidine bases through a cycloaddition reaction upon irradiation. Owing to its close association with skin cancer, the mechanism of CPD formation has been studied thoroughly. Among many aspects of CPD, its formation involving 5‐methylcytosine (5mC) has been of special interest because the CPD yield is known to increase with C5‐methylation of cytosine. In this work, high‐level quantum mechanics/molecular mechanics (QM/MM) calculations are used to examine a previously experimentally detected pathway for CPD formation in hetero (thymine‐cytosine and thymine‐5mC) dipyrimidines, which is facilitated through intersystem crossing in thymine and formation of a triplet biradical intermediate. A DNA duplex model system containing a core sequence TmCG or TCG is used. The stabilization of a radical center in the biradical intermediate by the methyl group of 5mC can lead to increased CPD yield in TmCG compared with its non‐methylated counterpart, TCG, thereby suggesting the existence of a new pathway of CPD formation enhanced by 5mC.