skip to main content


Title: Home‐field advantage, N‐priming and precipitation independently govern litter decomposition in a plant diversity manipulation
Abstract

Litter decomposition facilitates the recycling of often limiting resources, which may promote plant productivity responses to diversity, that is, overyielding. However, the direct relationship between decomposition,k, and overyielding remains underexplored in grassland diversity manipulations.

We test whether local adaptation of microbes, that is, home‐field advantage (HFA), N‐priming from plant inputs or precipitation drive decomposition and whether decomposition generates overyielding. Within a grassland diversity‐manipulation, altering plant richness (1, 2, 3 and 6 species), composition (communities composed of plants from a single‐family or multiple‐families) and precipitation (50% and 150% ambient growing season precipitation), we conducted a litter decomposition experiment. In spring 2020, we deployed four replicate switchgrass,Panicum virgatum, litter bags (1.59 mm mesh opening), collecting them over 7 months to estimate litterk.

Precipitation was a strong, independent driver of decomposition. Switchgrass decomposition accelerated with grass richness and decelerated as phylogenetic dissimilarity from switchgrass increased, suggesting decomposition is fastest at ‘home’. However, decomposition slowed with switchgrass density. In plots that contained switchgrass, we observed no relationship between decomposition and fungal saprotroph dissimilarity from switchgrass. However, in plots without switchgrass, decomposition slowed with increasing saprotroph dissimilarity from switchgrass. Combined these findings suggest that HFA is strongest when closely related neighbours, that is, heterospecific neighbours, are present in the community, rather than other individuals of the same species, that is, conspecifics. Legumes accelerated decomposition with more litter N remaining in those plots, suggesting that N‐inputs from planted legumes are priming decomposition of litter C. However, decomposition and overyielding were unrelated in legume communities. While in grass communities, overyielding and decomposition were positively related and the relationship was strongest in plots with low densities of switchgrass, that is, with heterospecific neighbours.

Combined these findings suggest that plant species richness and community composition stimulate litter decomposition through multiple mechanisms, including N‐priming, but only HFA from local adaptation of microbes on closely related species correlates with overyielding, likely through resource recycling. Our results link diversity with ecosystem processes facilitating above‐ground productivity. Whether diversity loss will affect litter decomposition, productivity or both is contingent on resident plant traits and whether a locally adapted soil microbiome is maintained.

Read the freePlain Language Summaryfor this article on the Journal blog.

 
more » « less
Award ID(s):
1738041
NSF-PAR ID:
10489931
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
ISSN:
0269-8463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although the importance of the soil microbiome in mediating plant community structures and functions has been increasingly emphasized in ecological studies, the biological processes driving crop diversity overyielding remain unexplained in agriculture. Based on the plant–soil feedback (PSF) theory and method, we quantified to what extent and how soil microbes contributed to intercropping overyielding.

    Soils were collected as inocula and sequenced from a unique 10‐year field experiment, consisting of monoculture, intercropping and rotation planted with wheat (Triticum aestivum), maize (Zea mays)or faba bean (Vicia faba). A PSF greenhouse study was conducted to test microbial effects on three crops' growth in monoculture or intercropping.

    In wheat & faba bean (W&F) and maize & faba bean (M&F) systems, soil microbes drove intercropping overyielding compared to monoculture, with 28%–51% of the overyielding contributed by microbial legacies. The overyielding effects resulted from negative PSFs in both systems, as crops, in particular faba bean grew better in soils conditioned by other crops than itself. Moreover, faba bean grew better in soils from intercropping or rotation than from the average of monocultures, indicating a strong positive legacy effect of multispecies cropping systems. However, with positive PSF and negative legacy benefit effect of intercropping/rotation, we did not observe significant overyielding in the W&M system.

    With more bacterial and fungal dissimilarities by metabarcoding in heterospecific than its own soil, the better it improved faba bean growth. More detailed analysis showed faba bean monoculture soil accumulated more putative pathogens with higherFusariumrelative abundance and moreFusarium oxysporumgene copies by qPCR, while in heterospecific soils, there were less pathogenic effects when cereals were engaged. Further analysis in maize/faba bean intercropping also showed an increase of rhizobia relative abundance.

    Synthesis and applications. Our results demonstrate a soil microbiome‐mediated advantage in intercropping through suppression of the negative PSF of pathogens and increasing beneficial microbes. As microbial mediation of overyielding is context‐dependent, we conclude that the dynamics of both beneficial and pathogenic microbes should be considered in designing cropping systems for sustainable agriculture, particularly including combinations of legumes and cereals.

     
    more » « less
  2. Abstract

    Litter decomposition plays a central role in carbon cycling in terrestrial ecosystems worldwide. In drylands, which cover 40% of the Earth's land surface, photodegradation and biotic decomposition driven by non‐rainfall moisture are important mechanisms of litter decay, though studies have only recently begun examining interactions between these two processes. We describe a novel priming mechanism in which photodegradation and biotic decay of the cuticle of plant litter increase litter absorption of non‐rainfall moisture (fog, dew and water vapor), supporting greater microbial decomposition.

    We used several field experiments in a coastal fog desert and a series of in situ observations to demonstrate a relationship between solar radiation, cuticle integrity, water absorption rates and mass loss.

    Experimentally attenuating solar radiation for 36 months slowed mass loss, reduced cuticle degradation and decreased litter moisture uptake relative to litter under ambient sunlight controls. In a separate field experiment, removing the cuticle of recently senesced grass tillers increased mass loss fourfold over 6 months relative to controls. Tillers with degraded cuticles also absorbed 3.8 times more water following an overnight dew event than did those with intact cuticles. Finally, fungal growth was consistently greater on the sun‐facing side of in situ tillers than on the shaded side, coincident with greater cuticle degradation.

    We present a conceptual model where the cuticle of plant litter acts as a water‐resistant barrier that is first degraded by solar radiation and surficial microbes, increasing litter's ability to absorb enough water during non‐rainfall moisture events to support substantial biotic decomposition inside the tissue. Considering how photodegradation and non‐rainfall moisture are both substantial drivers of litter decomposition in drylands, understanding how they interact under realistic field conditions will help us better predict how these systems are responding to changing climate regimes.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Summary

    Pyrogenic savannas with a tree–grassland ‘matrix’ experience frequent fires (i.e. every 1–3 yr). Aboveground responses to frequent fires have been well studied, but responses of fungal litter decomposers, which directly affect fuels, remain poorly known. We hypothesized that each fire reorganizes belowground communities and slows litter decomposition, thereby influencing savanna fuel dynamics.

    In a pine savanna, we established patches near and away from pines that were either burned or unburned in that year. Within patches, we assessed fungal communities and microbial decomposition of newly deposited litter. Soil variables and plant communities were also assessed as proximate drivers of fungal communities.

    Fungal communities, but not soil variables or vegetation, differed substantially between burned and unburned patches. Saprotrophic fungi dominated in unburned patches but decreased in richness and relative abundance after fire. Differences in fungal communities with fire were greater in litter than in soils, but unaffected by pine proximity. Litter decomposed more slowly in burned than in unburned patches.

    Fires drive shifts between fire‐adapted and sensitive fungal taxa in pine savannas. Slower fuel decomposition in accordance with saprotroph declines should enhance fuel accumulation and could impact future fire characteristics. Thus, fire reorganization of fungal communities may enhance persistence of these fire‐adapted ecosystems.

     
    more » « less
  4. Abstract

    Improved understanding of bacterial community responses to multiple environmental filters over long time periods is a fundamental step to develop mechanistic explanations of plant–bacterial interactions as environmental change progresses.

    This is the first study to examine responses of grassland root‐associated bacterial communities to 15 years of experimental manipulations of plant species richness, functional group and factorial enrichment of atmospheric CO2(eCO2) and soil nitrogen (+N).

    Across the experiment, plant species richness was the strongest predictor of rhizobacterial community composition, followed by +N, with no observed effect of eCO2. Monocultures of C3and C4grasses and legumes all exhibited dissimilar rhizobacterial communities within and among those groups. Functional responses were also dependent on plant functional group, where N2‐fixation genes, NO3−‐reducing genes and P‐solubilizing predicted gene abundances increased under resource‐enriched conditions for grasses, but generally declined for legumes. In diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobacterial composition, while +N increased the predicted abundance of nitrogenase‐encoding genes, and eCO2+N increased the predicted abundance of bacterial P‐solubilizing genes.

    Synthesis: Our findings suggest that rhizobacterial community structure and function will be affected by important global environmental change factors such as eCO2, but these responses are primarily contingent on plant species richness and the selective influence of different plant functional groups.

     
    more » « less
  5. Abstract

    Phylogenetic and functional diversity are theorised to increase invasion resistance. Experimentally testing whether plant communities higher in these components of diversity are less invasible is an important step for guiding restoration designs.

    To investigate how phylogenetic and functional diversity of vegetation affect invasion resistance in a restoration setting, we used experimental prairie restoration plots. The experiment crossed three levels of phylogenetic diversity with two levels of functional diversity while species richness was held constant. We allowed invaders to colonise plots; these included native species from neighbouring plots and non‐native invasive species from a surrounding old field. We tested if invader biomass was influenced by phylogenetic and functional diversity, and phylogenetic and hierarchical trait distances between invaders and planted species. We binned each invader into three categories: native species from neighbouring experimental plots (site‐specific invaders), native species not part of the experimental species pool (native invaders) or non‐native species (non‐native invaders).

    Counter to expectation, both non‐native and native invaders became more abundant in more phylogenetically diverse plots. However, plots with higher abundance of planted Asteraceae, a dominant family of the tallgrass prairie, had lower invader biomass for both native and non‐native invaders.

    We also found that hierarchical trait differences shaped invasion. The species that became most abundant were non‐native invaders that were taller, and native invaders with low specific leaf area relative to planted species. Site‐specific invaders were not influenced by any plot‐level diversity metrics tested.

    Synthesis and application: Our results suggest that greater phylogenetic diversity may lower resistance to invasion. This effect may be due to more even but sparser niche packing in high‐diversity plots, associated with greater availability of unsaturated niche space for colonisation. However, trait composition fostered invasion resistance in two ways in our study. First, establishment of native species with strongly dominant traits may confer invasion resistance. Second, species mixes that optimise trait differences between planted vegetation and likely invaders may enhance invasion‐resistance.

     
    more » « less