Cognitive control, or executive function, is a key feature of human cognition, allowing individuals to plan, acquire new information, or adopt new strategies when the circumstances change. Yet it is unclear which factors promote the evolution of more sophisticated executive-function abilities such as those possessed by humans. Examining cognitive control in nonhuman primates, our closest relatives, can help to identify these evolutionary processes. Here, we developed a novel battery to experimentally measure multiple aspects of cognitive control in primates: temporal discounting, motor inhibition, short-term memory, reversal learning, novelty responses, and persistence. We tested lemur species with targeted, independent variation in both ecological and social features (ruffed lemurs, Coquerel’s sifakas, ring-tailed lemurs, and mongoose lemurs; N = 39) and found that ecological rather than social characteristics best predicted patterns of cognitive control across these species. This highlights the importance of integrating cognitive data with species’ natural history to understand the origins of complex cognition.
more »
« less
Terrain Ruggedness and Canopy Height Predict Short-Range Dispersal in the Critically Endangered Black-and-White Ruffed Lemur
Dispersal is a fundamental aspect of primates’ lives and influences both population and community structuring, as well as species evolution. Primates disperse within an environmental context, where both local and intervening environmental factors affect all phases of dispersal. To date, research has primarily focused on how the intervening landscape influences primate dispersal, with few assessing the effects of local habitat characteristics. Here, we use a landscape genetics approach to examine between- and within-site environmental drivers of short-range black-and-white ruffed lemur (Varecia variegata) dispersal in the Ranomafana region of southeastern Madagascar. We identified the most influential drivers of short-range ruffed lemur dispersal as being between-site terrain ruggedness and canopy height, more so than any within-site habitat characteristic evaluated. Our results suggest that ruffed lemurs disperse through the least rugged terrain that enables them to remain within their preferred tall-canopied forest habitat. Furthermore, we noted a scale-dependent environmental effect when comparing our results to earlier landscape characteristics identified as driving long-range ruffed lemur dispersal. We found that forest structure drives short-range dispersal events, whereas forest presence facilitates long-range dispersal and multigenerational gene flow. Together, our findings highlight the importance of retaining high-quality forests and forest continuity to facilitate dispersal and maintain functional connectivity in ruffed lemurs.
more »
« less
- Award ID(s):
- 2041683
- PAR ID:
- 10489988
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Genes
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2073-4425
- Page Range / eLocation ID:
- 746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel’s sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel’s sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.more » « less
-
The Papillomaviridae are a family of vertebrate-infecting viruses of oncogenic potential generally thought to be host species- and tissue-specific. Despite their phylogenetic relatedness to humans, there is a scarcity of data on papillomaviruses (PVs) in speciose non-human primate lineages, particularly the lemuriform primates. Varecia variegata (black-and-white ruffed lemurs) and Varecia rubra (red ruffed lemurs), two closely related species comprising the Varecia genus, are critically endangered with large global captive populations. Varecia variegata papillomavirus (VavPV) types −1 and −2, the first PVs in lemurs with a fully identified genome, were previously characterized from captive V. variegata saliva. To build upon this discovery, saliva samples were collected from captive V. rubra with the following aims: (1) to identify PVs shared between V. variegata and V. rubra and (2) to characterize novel PVs in V. rubra to better understand PV diversity in the lemuriform primates. Three complete PV genomes were determined from V. rubra samples. Two of these PV genomes share 98% L1 nucleotide identity with VavPV2, denoting interspecies infection of V. rubra by VavPV2. This work represents the first reported case of interspecies PV infection amongst the strepsirrhine primates. The third PV genome shares <68% L1 nucleotide identity with that of all PVs. Thus, it represents a new PV species and has been named Varecia rubra papillomavirus 1 (VarPV1). VavPV1, VavPV2, and VarPV1 form a new clade within the Papillomaviridae family, likely representing a novel genus. Future work diversifying sample collection (i.e., lemur host species from multiple genera, sample type, geographic location, and wild populations) is likely to uncover a world of diverse lemur PVs.more » « less
-
Abstract Madagascar's lemurs are threatened by forest loss, fragmentation, and degradation. Many species use flexible behaviors to survive in degraded habitat, but their ability to persist in very small areas may be limited. Insular lemurs, like those found on Nosy Be, an island off the northwestern coast of Madagascar, are at heightened risk of sudden population declines and extirpation. Nosy Be is home to two Critically Endangered species—the endemic Nosy Be sportive lemur (Lepilemur tymerlachsoni) and Claire's mouse lemur (Microcebus mamiratra)—as well as the Endangered black lemur (Eulemur macaco). Most of the remaining forest on Nosy Be is protected by the 862‐ha Lokobe National Park. To document how Nosy Be lemurs use their restricted habitat, we conducted vegetation and reconnaissance surveys on 53 transects in and around Lokobe. We collected data on tree size, canopy cover, understory visibility, and elevation for 248 lemur sightings. We used a spatially explicit, multi‐species occupancy model to investigate which forest‐structure variables are important to lemurs. Our results represent some of the first data on habitat use by insular lemurs. Black lemurs preferred significantly larger trees and areas with less dense understory. They also occurred significantly less outside of Lokobe National Park, even when accounting for sampling effort and geography. The distributions of the sportive and mouse lemurs were not related to the forest structure variables we documented, but they did negatively predict each other—perhaps because their habitat requirements differ. These results also underscore the importance of the national park to protecting the black lemur population on Nosy Be and raise questions about what factors do influence the distribution of Nosy Be's smaller lemurs. Close monitoring is needed to prevent these populations and the ecosystem services they provide from disappearing, as have other island lemurs.more » « less
-
Abstract Dispersal evolves as an adaptive mechanism to optimize individual fitness across the landscape. Specifically, dispersal represents a mechanism to escape fitness costs resulting from changes in environmental conditions. Decades of empirical work suggest that individuals use local habitat cues to make movement decisions, but theory predicts that dispersal can also evolve as a fixed trait, independent of local conditions, in environments characterized by a history of stochastic spatiotemporal variation. Until now, however, both conditional and fixed models of dispersal evolution have primarily been evaluated using emigration data (stay vs. leave), and not dispersal distances: a more comprehensive measure of dispersal. Our goal was to test whether conditional or fixed models of dispersal evolution predict variation in dispersal distance in the stream salamanderGyrinophilus porphyriticus.We quantified variation in habitat conditions using measures of salamander performance from 4 yr of spatially explicit, capture–mark–recapture (CMR) data across three headwater streams in the Hubbard Brook Experimental Forest in central New Hampshire, USA. We used body condition as an index of local habitat quality that individuals may use to make dispersal decisions, and survival probability estimated from multistate CMR models as an index of mortality risk resulting from the long‐term history of environmental variation. We found that dispersal distances increased with declining survival probability, indicating that salamanders disperse further in risky environments. Dispersal distances were unrelated to spatial variation in body condition, suggesting that salamanders do not base dispersal distance decisions on local habitat quality. Our study provides the first empirical support for fixed models of dispersal evolution, which predict that dispersal evolves in response to a history of spatiotemporal environmental variation, rather than as a conditional response to current habitat conditions. More broadly, this study underscores the value of assessing alternative scales of environmental variation to gain a more complete and balanced understanding of dispersal evolution.more » « less