Abstract Modifying turbine blade pitch, generator torque, and nacelle direction (yaw) are conventional approaches for enhancing energy output and alleviating structural loads. However, the efficacy of such methods is challenged by the lag in adjusting such settings after atmospheric variations are detected. Without reliable short-term wind forecasting tools, current practice, which mostly relies on data collected at or just behind turbines, can result in sub-optimal performance. Data-assimilation strategies can achieve real-time wind forecasting capabilities by correcting model-based predictions of the incoming wind using various field measurements. In this paper, we revisit the development of a class of prior models for real-time estimation via Kalman filtering algorithms that track atmospheric variations using ground-level pressure sensors. This class of models is given by the stochastically forced linearized Navier-Stokes equations around the three-dimensional waked velocity profile defined by a curled wake model. The stochastic input to these models is devised using convex optimization to achieve statistical consistency with high-fidelity large-eddy simulations. We demonstrate the ability of such models in reproducing the second-order statistical signatures of the turbulent velocity field. In support of assimilating ground-level pressure measurements with the predictions of said models, we also highlight the significance of the wall-normal dimension in enhancing two-point correlations of the pressure field between the ground and the computational domain. 
                        more » 
                        « less   
                    
                            
                            Stochastic Dynamical Modeling of Wind Farm Turbulence
                        
                    
    
            Low-fidelity engineering wake models are often combined with linear superposition laws to predict wake velocities across wind farms under steady atmospheric conditions. While convenient for wind farm planning and long-term performance evaluation, such models are unable to capture the time-varying nature of the waked velocity field, as they are agnostic to the complex aerodynamic interactions among wind turbines and the effects of atmospheric boundary layer turbulence. To account for such effects while remaining amenable to conventional system-theoretic tools for flow estimation and control, we propose a new class of data-enhanced physics-based models for the dynamics of wind farm flow fluctuations. Our approach relies on the predictive capability of the stochastically forced linearized Navier–Stokes equations around static base flow profiles provided by conventional engineering wake models. We identify the stochastic forcing into the linearized dynamics via convex optimization to ensure statistical consistency with higher-fidelity models or experimental measurements while preserving model parsimony. We demonstrate the utility of our approach in completing the statistical signature of wake turbulence in accordance with large-eddy simulations of turbulent flow over a cascade of yawed wind turbines. Our numerical experiments provide insight into the significance of spatially distributed field measurements in recovering the statistical signature of wind farm turbulence and training stochastic linear models for short-term wind forecasting. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1916776
- PAR ID:
- 10490010
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Energies
- Volume:
- 16
- Issue:
- 19
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 6908
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract. Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power capture, and, in turn, annual energy production for an entire wind farm with very low computational costs compared to higher-fidelity numerical tools. However, wake and power predictions obtained with engineering wake models can be insufficiently accurate for wind farm optimization problems due to the ad hoc tuning of the model parameters, which are typically strongly dependent on the characteristics of the site and power plant under investigation. In this paper, lidar measurements collected for individual turbine wakes evolving over a flat terrain are leveraged to perform optimal tuning of the parameters of four widely used engineering wake models. The average wake velocity fields, used as a reference for the optimization problem, are obtained through a cluster analysis of lidar measurements performed under a broad range of turbine operative conditions, namely rotor thrust coefficients, and incoming wind characteristics, namely turbulence intensity at hub height. The sensitivity analysis of the optimally tuned model parameters and the respective physical interpretation are presented. The performance of the optimally tuned engineering wake models is discussed, while the results suggest that the optimally tuned Bastankhah and Ainslie wake models provide very good predictions of wind turbine wakes. Specifically, the Bastankhah wake model should be tuned only for the far-wake region, namely where the wake velocity field can be well approximated with a Gaussian profile in the radial direction. In contrast, the Ainslie model provides the advantage of using as input an arbitrary near-wake velocity profile, which can be obtained through other wake models, higher-fidelity tools, or experimental data. The good prediction capabilities of the Ainslie model indicate that the mixing-length model is a simple yet efficient turbulence closure to capture effects of incoming wind and wake-generated turbulence on the wake downstream evolution and predictions of turbine power yield.more » « less
- 
            Abstract The power performance and the wind velocity field of an onshore wind farm are predicted with machine learning models and the pseudo‐2D RANS model, then assessed against SCADA data. The wind farm under investigation is one of the sites involved with the American WAKE experimeNt (AWAKEN). The performed simulations enable predictions of the power capture at the farm and turbine levels while providing insights into the effects on power capture associated with wake interactions that operating upstream turbines induce, as well as the variability caused by atmospheric stability. The machine learning models show improved accuracy compared to the pseudo‐2D RANS model in the predictions of turbine power capture and farm power capture with roughly half the normalized error. The machine learning models also entail lower computational costs upon training. Further, the machine learning models provide predictions of the wind turbulence intensity at the turbine level for different wind and atmospheric conditions with very good accuracy, which is difficult to achieve through RANS modeling. Additionally, farm‐to‐farm interactions are noted, with adverse impacts on power predictions from both models.more » « less
- 
            Next-generation models of wind farm flows are increasingly needed to assist the design, operation, and performance diagnostic of modern wind power plants. Accuracy in the descriptions of the wind farm aerodynamics, including the effects of atmospheric stability, coalescing wakes, and the pressure field induced by the turbine rotors are necessary attributes for such tools as well as low computational costs. The Pseudo-2D RANS model is formulated to provide an efficient solution of the Navier–Stokes equations governing wind-farm flows installed in flat terrain and offshore. The turbulence closure and actuator disk model are calibrated based on wind light detection and ranging measurements of wind turbine wakes collected under different operative and atmospheric conditions. A shallow-water formulation is implemented to achieve a converged solution for the velocity and pressure fields across a farm with computational costs comparable to those of mid-fidelity engineering wake models. The theoretical foundations and numerical scheme of the Pseudo-2D RANS model are provided, together with a detailed description of the verification and validation processes. The model is assessed against a large dataset of power production for an onshore wind farm located in North Texas showing a normalized mean absolute error of 5.6% on the 10-min-averaged active power and 3% on the clustered wind farm efficiency, which represent 8% and 24%, respectively, improvements with respect to the best-performing engineering wake model tested in this work.more » « less
- 
            As turbines continue to grow in hub height and rotor diameter and wind farms grow larger, consideration of stratified atmospheric boundary layer (ABL) processes in wind power models becomes increasingly important. Atmospheric stratification can considerably alter the boundary layer structure and flow characteristics through buoyant forcing. Variations in buoyancy, and corresponding ABL stability, in both space and time impact ABL wind speed shear, wind direction shear, boundary layer height, turbulence kinetic energy, and turbulence intensity. In addition, the presence of stratification will result in a direct buoyant forcing within the wake region. These ABL mechanisms affect turbine power production, the momentum and kinetic energy deficit wakes generated by turbines, and the turbulent mixing and kinetic energy entrainment in wind farms. Presently, state-of-practice engineering models of mean wake momentum utilize highly empirical turbulence models that do not explicitly account for ABL stability. Models also often neglect the interaction between the wake momentum deficit and the turbulence kinetic energy added by the wake, which depends on stratification. In this work, we develop a turbulence model that models the wake-added turbulence kinetic energy, and we couple it with a wake model based on the parabolized Reynolds-averaged Navier–Stokes equations. Comparing the model predictions to large eddy simulations across stabilities (Obukhov lengths) and surface roughness lengths, we find lower prediction error in both power production and the wake velocity field across the ABL conditions and error metrics investigated.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    