skip to main content


Title: Experimental warming accelerates positive soil priming in a temperate grassland ecosystem
Abstract

Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32–37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.

 
more » « less
NSF-PAR ID:
10490093
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2, and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post‐thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post‐thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2and CH4 fluxes from decomposition. Thus, the increased C‐storage expected from higher productivity was limited and the high global warming potential of CH4contributed a net positive warming effect. Although post‐thaw peatlands are currently C sinks due to high NPP offsetting high CO2release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.

     
    more » « less
  2. Abstract

    Northern peatlands are a large C stock and often act as a C sink, but are susceptible to climate warming. To understand the role of peatlands in the global carbon‐climate feedback, it is necessary to accurately quantify their C stock changes and decomposition. In this study, a process‐based model, the Peatland Terrestrial Ecosystem Model, is used to simulate pan‐Arctic peatland C dynamics from 15 ka BP to 1990. To improve the accuracy of the simulation, spatially explicit water run‐on and run‐off processes were considered, four different pan‐Arctic peatland extent data sets were used, and a spatially explicit peat basal date data set was developed using a neural network approach. The model was calibrated against 2055 peat thickness observations and the parameters were interpolated to the pan‐Arctic region. Using the model, we estimate that, in 1990, the pan‐Arctic peatlands soil C stock was 396–421 Pg C, and the Holocene average C accumulation rate was 22.9 g C·m−2 yr−1. Our estimated peat permafrost development history generally agrees with multi‐proxy‐based paleo‐climate data sets and core‐derived permafrost areal dynamics. Under Anthropocene warming, in the freeze‐thaw and permafrost‐free regions, the peat C accumulation rate decreased, but it increased in permafrost regions. Our study suggests that if current permafrost regions switch to permafrost‐free conditions in a warming future, the peat C accumulation rate of the entire pan‐Arctic region will decrease, but the sink and source activities of these peatlands are still uncertain.

     
    more » « less
  3. Abstract

    Temperature sensitivity of soil organic carbon (SOC) decomposition is one of the major uncertainties in predicting climate‐carbon (C) cycle feedback. Results from previous studies are highly contradictory with old soil C decomposition being more, similarly, or less sensitive to temperature than decomposition of young fractions. The contradictory results are partly from difficulties in distinguishing old from youngSOCand their changes over time in the experiments with or without isotopic techniques. In this study, we have conducted a long‐term field incubation experiment with deep soil collars (0–70 cm in depth, 10 cm in diameter ofPVCtubes) for excluding root C input to examine apparent temperature sensitivity ofSOCdecomposition under ambient and warming treatments from 2002 to 2008. The data from the experiment were infused into a multi‐pool soil C model to estimate intrinsic temperature sensitivity ofSOCdecomposition and C residence times of threeSOCfractions (i.e., active, slow, and passive) using a data assimilation (DA) technique. As activeSOCwith the short C residence time was progressively depleted in the deep soil collars under both ambient and warming treatments, the residences times of the wholeSOCbecame longer over time. Concomitantly, the estimated apparent and intrinsic temperature sensitivity ofSOCdecomposition also became gradually higher over time as more than 50% of activeSOCwas depleted. Thus, the temperature sensitivity of soil C decomposition in deep soil collars was positively correlated with the mean C residence times. However, the regression slope of the temperature sensitivity against the residence time was lower under the warming treatment than under ambient temperature, indicating that other processes also regulated temperature sensitivity ofSOCdecomposition. These results indicate that oldSOCdecomposition is more sensitive to temperature than young components, making the old C more vulnerable to future warmer climate.

     
    more » « less
  4. Abstract

    Thermokarst lakes accelerate deep permafrost thaw and the mobilization of previously frozen soil organic carbon. This leads to microbial decomposition and large releases of carbon dioxide (CO2) and methane (CH4) that enhance climate warming. However, the time scale of permafrost-carbon emissions following thaw is not well known but is important for understanding how abrupt permafrost thaw impacts climate feedback. We combined field measurements and radiocarbon dating of CH4ebullition with (a) an assessment of lake area changes delineated from high-resolution (1–2.5 m) optical imagery and (b) geophysical measurements of thaw bulbs (taliks) to determine the spatiotemporal dynamics of hotspot-seep CH4ebullition in interior Alaska thermokarst lakes. Hotspot seeps are characterized as point-sources of high ebullition that release14C-depleted CH4from deep (up to tens of meters) within lake thaw bulbs year-round. Thermokarst lakes, initiated by a variety of factors, doubled in number and increased 37.5% in area from 1949 to 2009 as climate warmed. Approximately 80% of contemporary CH4hotspot seeps were associated with this recent thermokarst activity, occurring where 60 years of abrupt thaw took place as a result of new and expanded lake areas. Hotspot occurrence diminished with distance from thermokarst lake margins. We attribute older14C ages of CH4released from hotspot seeps in older, expanding thermokarst lakes (14CCH420 079 ± 1227 years BP, mean ± standard error (s.e.m.) years) to deeper taliks (thaw bulbs) compared to younger14CCH4in new lakes (14CCH48526 ± 741 years BP) with shallower taliks. We find that smaller, non-hotspot ebullition seeps have younger14C ages (expanding lakes 7473 ± 1762 years; new lakes 4742 ± 803 years) and that their emissions span a larger historic range. These observations provide a first-order constraint on the magnitude and decadal-scale duration of CH4-hotspot seep emissions following formation of thermokarst lakes as climate warms.

     
    more » « less
  5. Abstract

    Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.

     
    more » « less