skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relativistic Effects on Circumbinary Disk Evolution: Breaking the Polar Alignment around Eccentric Black Hole Binary Systems
Abstract We study the effects of general relativity (GR) on the evolution and alignment of circumbinary disks around binaries on all scales. We implement relativistic apsidal precession of the binary into the hydrodynamics codephantom. We find that the effects of GR can suppress the stable polar alignment of a circumbinary disk, depending on how the relativistic binary apsidal precession timescale compares to the disk nodal precession timescale. Studies of circumbinary disk evolution typically ignore the effects of GR, which is an appropriate simplification for low-mass or widely separated binary systems. In this case, polar alignment occurs, provided that the disks initial misalignment is sufficiently large. However, systems with a very short relativistic precession timescale cannot polar align and instead move toward coplanar alignment. In the intermediate regime where the timescales are similar, the outcome depends upon the properties of the disk. Polar alignment is more likely in the wavelike disk regime (where the disk viscosity parameter is less than the aspect ratio,α<H/r), since the disk is in good radial communication. In the viscous disk regime, disk breaking is more likely. Multiple rings can destructively interact with one another, resulting in short disk lifetimes and the disk moving toward coplanar alignment. Around main-sequence star or stellar mass black hole binaries, polar alignment may be suppressed far from the binary, but in general, the inner parts of the disk can align to polar. Polar alignment may be completely suppressed for disks around supermassive black holes for close binary separations.  more » « less
Award ID(s):
2107738
PAR ID:
10490126
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 77
Size(s):
Article No. 77
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many studies have recently documented the orbital response of eccentric binaries accreting from thin circumbinary disks, characterizing the change in the binary semimajor axis and eccentricity. We extend these calculations to include the precession of the binary’s longitude of periapse induced by the circumbinary disk, and we characterize this precession continuously with binary eccentricityebfor equal mass components. This disk-induced apsidal precession is prograde with a weak dependence on the binary eccentricity wheneb≲ 0.4 and decreases approximately linearly foreb≳ 0.4; yet at allebbinary precession is faster than the rates of change to the semimajor axis and eccentricity by an order of magnitude. We estimate that such precession effects are likely most important for subparsec separated binaries with masses ≲107M, like LISA precursors. We find that accreting, equal-mass LISA binaries withM< 106M(and the most massiveM∼ 107Mbinaries out toz∼ 3) may acquire a detectable phase offset due to the disk-induced precession. Moreover, disk-induced precession can compete with general relativistic precession in a vacuum, making it important for observer-dependent electromagnetic searches for accreting massive binaries—like Doppler boost and binary self-lensing models—after potentially only a few orbital periods. 
    more » « less
  2. Abstract Mutually misaligned circumbinary planets may form in a warped or broken gas disk or from later planet–planet interactions. With numerical simulations and analytic estimates we explore the dynamics of two circumbinary planets with a large mutual inclination. A coplanar inner planet causes prograde apsidal precession of the binary and the stationary inclination for the outer planet is higher for larger outer planet orbital radius. In this case a coplanar outer planet always remains coplanar. On the other hand, a polar inner planet causes retrograde apsidal precession of the binary orbit and the stationary inclination is smaller for larger outer planet orbital radius. For a range of outer planet semimajor axes, an initially coplanar orbit is librating meaning that the outer planet undergoes large tilt oscillations. Circumbinary planets that are highly inclined to the binary are difficult to detect—it is unlikely for a planet to have an inclination below the transit detection limit in the presence of a polar inner planet. These results suggest that there could be a population of circumbinary planets that are undergoing large tilt oscillations. 
    more » « less
  3. Abstract We examine the geometry of the post–asymptotic giant branch (AGB) star binary AC Her and its circumbinary disk. We show that the observations describe a binary orbit that is perpendicular to the disk with an angular momentum vector that is within 9° of the binary eccentricity vector, meaning that the disk is close to a stable polar alignment. The most likely explanation for the very large inner radius of the dust is a planet within the circumbinary disk. This is therefore both the first reported detection of a polar circumbinary disk around a post-AGB binary and the first evidence of a polar circumbinary planet. We consider the dynamical constraints on the circumbinary disk size and mass. The polar circumbinary disk feeds circumstellar disks with gas on orbits that are highly inclined with respect to the binary orbit plane. The resulting circumstellar disk inclination could be anywhere from coplanar to polar depending upon the competition between the mass accretion and binary torques. 
    more » « less
  4. Abstract Mechanisms have been proposed to enhance the merger rate of stellar-mass black hole binaries, such as the Von Zeipel–Lidov–Kozai mechanism (vZLK). However, high inclinations are required in order to greatly excite the eccentricity and to reduce the merger time through vZLK. Here, we propose a novel pathway through which compact binaries could merge due to eccentricity increase in general, including in a near coplanar configuration. Specifically, a compact binary migrating in an active galactic nucleus disk could be captured in an evection resonance, when the precession rate of the binary equals the orbital period around the supermassive black hole. In our study we include precession due to first-order post-Newtonian precession as well as that due to disk around one or both components of the binary. Eccentricity is excited when the binary sweeps through the resonance, which happens only when it migrates on a timescale 10–100 times the libration timescale of the resonance. Libration timescale decreases as the mass of the disk increases. The eccentricity excitation of the binary can reduce the merger timescale by up to a factor of ∼10 3−5 . 
    more » « less
  5. Abstract We present fully relativistic predictions for the electromagnetic emission produced by accretion disks surrounding spinning and nonspinning supermassive binary black holes on the verge of merging. We use the codeBothrosto post-process data from 3D general relativistic magnetohydrodynamic simulations via ray-tracing calculations. These simulations model the dynamics of a circumbinary disk and the mini-disks that form around two equal-mass black holes orbiting each other at an initial separation of 20 gravitational radii, and evolve the system for more than 10 orbits in the inspiral regime. We model the emission as the sum of thermal blackbody radiation emitted by an optically thick accretion disk and a power-law spectrum extending to hard X-rays emitted by a hot optically thin corona. We generate time-dependent spectra, images, and light curves at various frequencies to investigate intrinsic periodic signals in the emission, as well as the effects of the black hole spin. We find that prograde black hole spin makes mini-disks brighter since the smaller innermost stable circular orbit angular momentum demands more dissipation before matter plunges to the horizon. However, compared to mini-disks in larger separation binaries with spinning black holes, our mini-disks are less luminous: unlike those systems, their mass accretion rate is lower than in the circumbinary disk, and they radiate with lower efficiency because their inflow times are shorter. Compared to a single black hole system matched in mass and accretion rate, these binaries have spectra noticeably weaker and softer in the UV. Finally, we discuss the implications of our findings for the potential observability of these systems. 
    more » « less