skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AC Her: Evidence of the First Polar Circumbinary Planet
Abstract We examine the geometry of the post–asymptotic giant branch (AGB) star binary AC Her and its circumbinary disk. We show that the observations describe a binary orbit that is perpendicular to the disk with an angular momentum vector that is within 9° of the binary eccentricity vector, meaning that the disk is close to a stable polar alignment. The most likely explanation for the very large inner radius of the dust is a planet within the circumbinary disk. This is therefore both the first reported detection of a polar circumbinary disk around a post-AGB binary and the first evidence of a polar circumbinary planet. We consider the dynamical constraints on the circumbinary disk size and mass. The polar circumbinary disk feeds circumstellar disks with gas on orbits that are highly inclined with respect to the binary orbit plane. The resulting circumstellar disk inclination could be anywhere from coplanar to polar depending upon the competition between the mass accretion and binary torques.  more » « less
Award ID(s):
2034336
PAR ID:
10473248
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
957
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L28
Size(s):
Article No. L28
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Some evolved binaries, namely post–asymptotic giant branch (AGB) binaries, are surrounded by stable and massive circumbinary disks similar to protoplanetary disks found around young stars. Around 10% of these disks are transition disks: they have a large inner cavity in the dust. Previous interferometric measurements and modeling have ruled out these cavities being formed by dust sublimation and suggested that they are due to massive circumbinary planets that trap dust in the disk and produce the observed depletion of refractory elements on the surfaces of the post-AGB stars. In this study, we test an alternative scenario in which the large cavities could be due to dynamical truncation from the inner binary. We performed near-infrared interferometric observations with the CHARA Array on the archetype of such a transition disk around a post-AGB binary: AC Her. We detect the companion at ten epochs over 4 yr and determine the three-dimensional orbit using these astrometric measurements in combination with a radial velocity time series. This is the first astrometric orbit constructed for a post-AGB binary system. We derive the best-fit orbit with a semimajor axis of 2.01 ± 0.01 mas (2.83 ± 0.08 au), inclination (142.9 ± 1.1)°, and longitude of the ascending node (155.1 ± 1.8)°. We find that the theoretical dynamical truncation and dust sublimation radii are at least ∼3× smaller than the observed inner disk radius (∼21.5 mas or 30 au). This strengthens the hypothesis that the origin of the cavity is due to the presence of a circumbinary planet. 
    more » « less
  2. Abstract Mutually misaligned circumbinary planets may form in a warped or broken gas disk or from later planet–planet interactions. With numerical simulations and analytic estimates we explore the dynamics of two circumbinary planets with a large mutual inclination. A coplanar inner planet causes prograde apsidal precession of the binary and the stationary inclination for the outer planet is higher for larger outer planet orbital radius. In this case a coplanar outer planet always remains coplanar. On the other hand, a polar inner planet causes retrograde apsidal precession of the binary orbit and the stationary inclination is smaller for larger outer planet orbital radius. For a range of outer planet semimajor axes, an initially coplanar orbit is librating meaning that the outer planet undergoes large tilt oscillations. Circumbinary planets that are highly inclined to the binary are difficult to detect—it is unlikely for a planet to have an inclination below the transit detection limit in the presence of a polar inner planet. These results suggest that there could be a population of circumbinary planets that are undergoing large tilt oscillations. 
    more » « less
  3. Abstract Young protostellar binary systems, with expected ages less than ∼105yr, are little modified since birth, providing key clues to binary formation and evolution. We present a first look at the young, Class 0 binary protostellar system R CrA IRAS 32 from the Early Planet Formation in Embedded Disks ALMA large program, which observed the system in the 1.3 mm continuum emission,12CO (2−1),13CO (2−1), C18O (2−1), SO (65−54), and nine other molecular lines that trace disks, envelopes, shocks, and outflows. With a continuum resolution of ∼0.″03 (∼5 au, at a distance of 150 pc), we characterize the newly discovered binary system with a separation of 207 au, their circumstellar disks, and a circumbinary disklike structure. The circumstellar disk radii are 26.9 ± 0.3 and 22.8 ± 0.3 au for sources A and B, respectively, and their circumstellar disk dust masses are estimated as 22.5 ± 1.1Mand 12.4 ± 0.6M, respectively. The circumstellar disks and the circumbinary structure have well-aligned position angles and inclinations, indicating formation in a smooth, ordered process such as disk fragmentation. In addition, the circumstellar disks have a near/far-side asymmetry in the continuum emission, suggesting that the dust has yet to settle into a thin layer near the midplane. Spectral analysis of CO isotopologues reveals outflows that originate from both of the sources and possibly from the circumbinary disklike structure. Furthermore, we detect Keplerian rotation in the13CO isotopologues toward both circumstellar disks and likely Keplerian rotation in the circumbinary structure; the latter suggests that it is probably a circumbinary disk. 
    more » « less
  4. Abstract We study the effects of general relativity (GR) on the evolution and alignment of circumbinary disks around binaries on all scales. We implement relativistic apsidal precession of the binary into the hydrodynamics codephantom. We find that the effects of GR can suppress the stable polar alignment of a circumbinary disk, depending on how the relativistic binary apsidal precession timescale compares to the disk nodal precession timescale. Studies of circumbinary disk evolution typically ignore the effects of GR, which is an appropriate simplification for low-mass or widely separated binary systems. In this case, polar alignment occurs, provided that the disks initial misalignment is sufficiently large. However, systems with a very short relativistic precession timescale cannot polar align and instead move toward coplanar alignment. In the intermediate regime where the timescales are similar, the outcome depends upon the properties of the disk. Polar alignment is more likely in the wavelike disk regime (where the disk viscosity parameter is less than the aspect ratio,α<H/r), since the disk is in good radial communication. In the viscous disk regime, disk breaking is more likely. Multiple rings can destructively interact with one another, resulting in short disk lifetimes and the disk moving toward coplanar alignment. Around main-sequence star or stellar mass black hole binaries, polar alignment may be suppressed far from the binary, but in general, the inner parts of the disk can align to polar. Polar alignment may be completely suppressed for disks around supermassive black holes for close binary separations. 
    more » « less
  5. Abstract Close binary systems present challenges to planet formation. As binary separations decrease, so do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and therefore planet formation. In this work, we characterize the young binary−disk system FO Tau. We determine the first full orbital solution for the system, finding masses of 0.35 0.05 + 0.06 M and 0.34 ± 0.05Mfor the stellar components, a semimajor axis of 22 ( 1 + 2 ) au, and an eccentricity of 0.21 ( 0.03 + 0.04 ) . With long-baseline Atacama Large Millimeter/submillimeter Array interferometry, we detect 1.3 mm continuum and12CO (J= 2–1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane, and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation. 
    more » « less