skip to main content


Title: Tungsten in barium stars
ABSTRACT

Classical barium stars are red giants that receive from their evolved binary companions material exposed to the slow neutron-capture nucleosynthesis, i.e. the s-process. Such a mechanism is expected to have taken place in the interiors of Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars. As post-interacting binaries, barium stars figure as powerful tracers of the s-process nucleosynthesis, evolution of binary systems, and mechanisms of mass transfer. The present study is the fourth in a series of high-resolution spectroscopic analyses on a sample of 180 barium stars, for which we report tungsten (W, Z = 74) abundances. The abundances were derived from synthetic spectrum computations of the W i absorption features at 4843.8 and 5224.7 Å. We were able to extract abundances for 94 stars; the measured [W/Fe] ratios range from ∼0.0 to 2.0 dex, increasing with decreasing metallicity. We noticed that in the plane [W/Fe] versus [s/Fe], barium stars follow the same trend observed in post-AGB stars. The observational data were also compared with predictions of the FRUITY and Monash AGB nucleosynthesis models. These expect values between −0.20 and +0.10 dex for the [W/hs] ratios, whereas a larger spread is observed in the program stars, with [W/hs] ranging from −0.40 to +0.60 dex. The stars with high [W/hs] ratios may represent evidence for the operation of the intermediate neuron-capture process at metallicities close to solar.

 
more » « less
NSF-PAR ID:
10490212
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4354-4363
Size(s):
["p. 4354-4363"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present detailed chemical compositions of four stars on the first-ascent red giant branch that are classified as chemically peculiar, but lack comprehensive analyses at high spectral resolution. For BD+03°2688, HE 0457−1805, HE 1255−2324, and HE 2207−1746, we derived metallicities [Fe/H] = −1.21, −0.19, −0.31, and −0.55, respectively, indicating a range in Galactic population membership. In addition to atmospheric parameters, we extracted elemental abundances for 28 elements, including the evolutionary-sensitive CNO group and 12C/13C ratios. Novel results are also presented for the heavy elements tungsten and thallium. All four stars have very large enhancements of neutron-capture elements, with high [La/Eu] ratios indicating enrichments from the slow neutron capture (s-process). To interpret these abundances, all indicative of [s/Fe] >1.0, we compared our results with data from literature, as well as with predictions from the Monash and fruity s-process nucleosynthesis models. BD+03°2688, HE 1255−2324, and HE 2207−1746 show C/O >1, while HE 0457−1805 has C/O <1. Since HE 0457−1805 and HE 1255−2324 are binary stars, their peculiarities are attributable to mass transfer. We identified HE 0457−1805 as a new barium giant star, and HE 1255−2324 as a new CH star, in fact a higher metallicity analogue CEMP-r/s star; the single object reported in literature so far with similar characteristics is the barium star HD 100503 ([Fe/H] = −0.72). A systematic monitoring is needed to confirm the binary nature of BD+03°2688 and HE 2207−1746, which are probably CH stars.

     
    more » « less
  2. Abstract The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/ α -element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α -elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/ α ] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d [Ce/H]/ d R GC being negative, while d [Ce/Fe]/ d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc −1 Gyr −1 . Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] and [Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources. 
    more » « less
  3. null (Ed.)
    Context. Young open clusters (ages of less than 200 Myr) have been observed to exhibit several peculiarities in their chemical compositions. These anomalies include a slightly sub-solar iron content, super-solar abundances of some atomic species (e.g. ionised chromium), and atypical enhancements of [Ba/Fe], with values up to ~0.7 dex. Regarding the behaviour of the other s -process elements like yttrium, zirconium, lanthanum, and cerium, there is general disagreement in the literature: some authors claim that they follow the same trend as barium, while others find solar abundances at all ages. Aims. In this work we expand upon our previous analysis of a sample of five young open clusters (IC 2391, IC 2602, IC 4665, NGC 2516, and NGC 2547) and one star-forming region (NGC 2264), with the aim of determining abundances of different neutron-capture elements, mainly Cu  I , Sr  I , Sr  II , Y  II , Zr  II , Ba  II , La  II , and Ce  II . For NGC 2264 and NGC 2547 we present the measurements of these elements for the first time. Methods. We analysed high-resolution, high signal-to-noise spectra of 23 solar-type stars observed within the Gaia -ESO survey. After a careful selection, we derived abundances of isolated and clean lines via spectral synthesis computations and in a strictly differential way with respect to the Sun. Results. We find that our clusters have solar [Cu/Fe] within the uncertainties, while we confirm that [Ba/Fe] is super-solar, with values ranging from +0.22 to +0.64 dex. Our analysis also points to a mild enhancement of Y, with [Y/Fe] ratios covering values between 0 and +0.3 dex. For the other s -process elements we find that [X/Fe] ratios are solar at all ages. Conclusions. It is not possible to reconcile the anomalous behaviour of Ba and Y at young ages with standard stellar yields and Galactic chemical evolution model predictions. We explore different possible scenarios related to the behaviour of spectral lines, from the dependence on the different ionisation stages and the sensitivity to the presence of magnetic fields (through the Landé factor) to the first ionisation potential effect. We also investigate the possibility that they may arise from alterations of the structure of the stellar photosphere due to the increased levels of stellar activity that affect the spectral line formation, and consequently the derived abundances. These effects seem to be stronger in stars at ages of less than ~ 100 Myr. However, we are still unable to explain these enhancements, and the Ba puzzle remains unsolved. With the present study we suggest that other elements, for example Sr, Zr, La, and Ce, might be more reliable tracer of the s -process at young ages, and we strongly encourage further critical observations. 
    more » « less
  4. null (Ed.)
    Context. Rubidium is one of the few elements produced by the neutron capture s - and r -processes in almost equal proportions. Recently, a Rb deficiency ([Rb/Fe] < 0.0), amounting to a factor of about two with respect to the Sun, has been found in M dwarfs of near-solar metallicity. This stands in contrast to the close-to-solar [Sr, Zr/Fe] ratios derived in the same stars. This deficiency is difficult to understand from the point of view of observations and of nucleosynthesis. Aims. To test the reliability of this Rb deficiency, we study the Rb and Zr abundances in a sample of KM-type giant stars across a similar metallicity range, extracted from the AMBRE Project. Methods. We used high-resolution and high signal-to-noise spectra to derive Rb and Zr abundances in a sample of 54 bright giant stars with metallicities in the range of −0.6 ≲ [Fe/H] ≲ +0.4 dex, via spectral synthesis in both local and non-local thermodynamic equilibrium (LTE and NLTE, respectively). We also studied the impact of the Zeeman broadening in the profile of the Rb  I at λ 7800 Å line. Results. The LTE analysis also results in a Rb deficiency in giant stars, however, it is considerably lower than that obtained in M dwarfs. However, once NLTE corrections are performed, the [Rb/Fe] ratios are very close to solar (average −0.01 ± 0.09 dex) in the full metallicity range studied here. This stands in contrast to the value found for M dwarfs. The [Zr/Fe] ratios derived are in excellent agreement with those obtained in previous studies in FGK dwarf stars with a similar metallicity. We investigate the effect of gravitational settling and magnetic activity as possible causes of the Rb deficiency found in M dwarfs. Although the former phenomenon has a negligible impact on the surface Rb abundance, the presence of an average magnetic field with an intensity that is typical of that observed in M dwarfs may result in systematic Rb abundance underestimations if the Zeeman broadening is not considered in the spectral synthesis. This may explain the Rb deficiency in M dwarfs, but not fully. On the other hand, the new [Rb/Fe] and [Rb/Zr] versus [Fe/H] relationships can be explained when the Rb production by rotating massive stars and low-to-intermediate mass stars (these latter also producing Zr) are considered, without the need to deviate from the standard s -process nucleosynthesis in asymptotic giant branch stars, as suggested previously. 
    more » « less
  5. null (Ed.)
    ABSTRACT We study the production of barium (Ba) and strontium (Sr) in ultrafaint dwarf (UFDs) galaxies. Both r- and s- processes produce these elements, and one can infer the contribution of the r-process from the characteristic r-process abundance pattern, whereas the s-process contribution remains largely unknown. We show that the current s-process yield from asymptotic giant branch (AGB) stars is not sufficient to explain the Ba and Sr abundances observed in UFDs. Production of these elements would need to be efficient from the beginning of star formation in the galaxies. The discrepancy of nearly or more than 1 dex is not reconciled even if we consider s-process in super-AGB stars. We consider a possible resolution by assuming rotating massive stars (RMSs) and electron-capture supernovae (ECSNe) as additional contributors. We find that the RMSs could be the origin of Ba in UFDs if ∼10 per cent of massive stars are rotating at 300 km s−1. As for ECSNe, we argue that their fraction is less than 2 per cent of core-collapse supernova. It narrows the progenitor mass-range to ${\lesssim}0.1\, \mathrm{M}_\odot$ at −3 ≲ [Fe/H] ≲ −2. We also explore another resolution by modifying the stellar initial mass function (IMF) in UFDs and find a top-light IMF model that reproduces the observed level of Ba-enrichment. Future observations that determine or tightly constrain the europium and nitrogen abundances are crucial to identify the origin of Ba and Sr in UFDs. 
    more » « less