skip to main content

Title: s- process enrichment of ultrafaint dwarf galaxies
ABSTRACT We study the production of barium (Ba) and strontium (Sr) in ultrafaint dwarf (UFDs) galaxies. Both r- and s- processes produce these elements, and one can infer the contribution of the r-process from the characteristic r-process abundance pattern, whereas the s-process contribution remains largely unknown. We show that the current s-process yield from asymptotic giant branch (AGB) stars is not sufficient to explain the Ba and Sr abundances observed in UFDs. Production of these elements would need to be efficient from the beginning of star formation in the galaxies. The discrepancy of nearly or more than 1 dex is not reconciled even if we consider s-process in super-AGB stars. We consider a possible resolution by assuming rotating massive stars (RMSs) and electron-capture supernovae (ECSNe) as additional contributors. We find that the RMSs could be the origin of Ba in UFDs if ∼10 per cent of massive stars are rotating at 300 km s−1. As for ECSNe, we argue that their fraction is less than 2 per cent of core-collapse supernova. It narrows the progenitor mass-range to ${\lesssim}0.1\, \mathrm{M}_\odot$ at −3 ≲ [Fe/H] ≲ −2. We also explore another resolution by modifying the stellar initial mass function (IMF) in UFDs and find more » a top-light IMF model that reproduces the observed level of Ba-enrichment. Future observations that determine or tightly constrain the europium and nitrogen abundances are crucial to identify the origin of Ba and Sr in UFDs. « less
Authors:
; ; ; ; ;
Award ID(s):
1716251
Publication Date:
NSF-PAR ID:
10296612
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
505
Issue:
3
Page Range or eLocation-ID:
3755 to 3766
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present atmospheric parameters and abundances for chemical elements from carbon to barium in metal-poor stars in Segue 1 (seven stars), Coma Berenices (three stars), and Triangulum ii (one star) ultrafaint dwarf galaxies (UFDs). The effective temperatures rely on new photometric observations in the visible and infra-red bands, obtained with the 2.5 m telescope of the SAI MSU Caucasian observatory. Abundances of up to fourteen chemical elements were derived under the non-local thermodynamic equilibrium (NLTE) line formation, and LTE abundances were obtained for up to five more elements. For the first time, we present abundance of oxygen in Seg 1 S1 and S4, silicon in ComaBer S2 and Tri ii S40, potassium in Seg 1 S1−S6 and ComaBer S1−S3, and barium in Seg 1 S7. Three stars in Segue 1, two stars in Coma Berenices, and Triangulum ii star have very low [Na/Mg] of −1.08 to −1.67 dex, which is usually attributed in the literature to an odd–even effect produced by nucleosynthesis in massive metal-free stars. We interpret this chemical property as a footprint of first stars, which is not blurred due to a small number of nucleosynthesis events that contributed to chemical abundance patterns of the sample stars. Our NLTE abundances of Sr and Ba in Coma Berenices,more »Segue 1, and Triangulum ii report on lower [Sr/Ba] abundance ratio in the UFDs compared to that in classical dwarf spheroidal galaxies and the Milky Way halo. However, in UFDs, just as in massive galaxies, [Sr/Ba] is not constant and it can be higher than the pure r-process ratio. We suggest a hypothesis of Sr production in metal-poor binaries at the earliest epoch of galactic evolution.« less
  2. ABSTRACT We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they mightmore »achieve an acceptable fit at all [Fe/H]. If many proto-NSs are born with strong magnetic fields and short spin periods, then their neutrino-driven winds provide a natural source for Sr, Y, Zr, Mo, Ru, and Ba in low-metallicity stellar populations. Conversely, spherical winds from unmagnetized proto-NSs overproduce the observed Sr, Y, and Zr abundances by a large factor.« less
  3. Context. Rubidium is one of the few elements produced by the neutron capture s - and r -processes in almost equal proportions. Recently, a Rb deficiency ([Rb/Fe] < 0.0), amounting to a factor of about two with respect to the Sun, has been found in M dwarfs of near-solar metallicity. This stands in contrast to the close-to-solar [Sr, Zr/Fe] ratios derived in the same stars. This deficiency is difficult to understand from the point of view of observations and of nucleosynthesis. Aims. To test the reliability of this Rb deficiency, we study the Rb and Zr abundances in a sample of KM-type giant stars across a similar metallicity range, extracted from the AMBRE Project. Methods. We used high-resolution and high signal-to-noise spectra to derive Rb and Zr abundances in a sample of 54 bright giant stars with metallicities in the range of −0.6 ≲ [Fe/H] ≲ +0.4 dex, via spectral synthesis in both local and non-local thermodynamic equilibrium (LTE and NLTE, respectively). We also studied the impact of the Zeeman broadening in the profile of the Rb  I at λ 7800 Å line. Results. The LTE analysis also results in a Rb deficiency in giant stars, however, it is considerablymore »lower than that obtained in M dwarfs. However, once NLTE corrections are performed, the [Rb/Fe] ratios are very close to solar (average −0.01 ± 0.09 dex) in the full metallicity range studied here. This stands in contrast to the value found for M dwarfs. The [Zr/Fe] ratios derived are in excellent agreement with those obtained in previous studies in FGK dwarf stars with a similar metallicity. We investigate the effect of gravitational settling and magnetic activity as possible causes of the Rb deficiency found in M dwarfs. Although the former phenomenon has a negligible impact on the surface Rb abundance, the presence of an average magnetic field with an intensity that is typical of that observed in M dwarfs may result in systematic Rb abundance underestimations if the Zeeman broadening is not considered in the spectral synthesis. This may explain the Rb deficiency in M dwarfs, but not fully. On the other hand, the new [Rb/Fe] and [Rb/Zr] versus [Fe/H] relationships can be explained when the Rb production by rotating massive stars and low-to-intermediate mass stars (these latter also producing Zr) are considered, without the need to deviate from the standard s -process nucleosynthesis in asymptotic giant branch stars, as suggested previously.« less
  4. We present a large homogeneous set of stellar parameters and abundances across a broad range of metallicities, involving 13 classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies. In total this study includes 380 stars in Fornax, Sagittarius, Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I, Ursa Major II, Leo I, Segue I, and Triangulum II. This sample represents the largest, homogeneous, high-resolution study of dSph galaxies to date. With our homogeneously derived catalog, we are able to search for similar and deviating trends across different galaxies. We investigate the mass dependence of the individual systems on the production of α-elements, but also try to shed light on the long-standing puzzle of the dominant production site of r-process elements. We use data from the Keck observatory archive and the ESO reduced archive to reanalyze stars from these 13 dSph galaxies. We automatize the step of obtaining stellar parameters, but run a full spectrum synthesis to derive all abundances except for iron. The homogenized set of abundances yielded the unique possibility to derive a relation between the onset of type Ia supernovae and the stellar mass of the galaxy. Furthermore, we derived a formula to estimate the evolution ofmore »α-elements. Placing all abundances consistently on the same scale is crucial to answer questions about the chemical history of galaxies. By homogeneously analysing Ba and Eu in the 13 systems, we have traced the onset of the s-process and found it to increase with metallicity as a function of the galaxy's stellar mass. Moreover, the r-process material correlates with the α-elements indicating some co-production of these, which in turn would point towards rare core-collapse supernovae rather than binary neutron star mergers as host for the r-process at low [Fe/H] in the investigated dSph systems.« less
  5. ABSTRACT

    We derive empirical constraints on the nucleosynthetic yields of nitrogen by incorporating N enrichment into our previously developed and empirically tuned multizone galactic chemical evolution model. We adopt a metallicity-independent (‘primary’) N yield from massive stars and a metallicity-dependent (‘secondary’) N yield from AGB stars. In our model, galactic radial zones do not evolve along the observed [N/O]–[O/H] relation, but first increase in [O/H] at roughly constant [N/O], then move upward in [N/O] via secondary N production. By t ≈ 5 Gyr, the model approaches an equilibrium [N/O]–[O/H] relation, which traces the radial oxygen gradient. Reproducing the [N/O]–[O/H] trend observed in extragalactic systems constrains the ratio of IMF-averaged N yields to the IMF-averaged O yield of core-collapse supernovae. We find good agreement if we adopt $y_\text{N}^\text{CC}/y_\text{O}^\text{CC}=0.024$ and $y_\text{N}^\text{AGB}/y_\text{O}^\text{CC} = 0.062(Z/Z_\odot)$. For the theoretical AGB yields we consider, simple stellar populations release half their N after only ∼250 Myr. Our model reproduces the [N/O]–[O/H] relation found for Milky Way stars in the APOGEE survey, and it reproduces (though imperfectly) the trends of stellar [N/O] with age and [O/Fe]. The metallicity-dependent yield plays the dominant role in shaping the gas-phase [N/O]–[O/H] relation, but the AGB time-delay is required to match the stellar age andmore »[O/Fe] trends. If we add ∼40 per cent oscillations to the star formation rate, the model reproduces the scatter in the gas phase [N/O]–[O/H] relation observed in external galaxies by MaNGA. We discuss implications of our results for theoretical models of N production by massive stars and AGB stars.

    « less