Abstract Metalation of the polynucleating ligandF,tbsLH6(1,3,5‐C6H9(NC6H3−4‐F−2‐NSiMe2tBu)3) with two equivalents of Zn(N(SiMe3)2)2affords the dinuclear product (F,tbsLH2)Zn2(1), which can be further deprotonated to yield (F,tbsL)Zn2Li2(OEt2)4(2). Transmetalation of2with NiCl2(py)2yields the heterometallic, trinuclear cluster (F,tbsL)Zn2Ni(py) (3). Reduction of3with KC8affords [KC222][(F,tbsL)Zn2Ni] (4) which features a monovalent Ni centre. Addition of 1‐adamantyl azide to4generates the bridging μ3‐nitrenoid adduct [K(THF)3][(F,tbsL)Zn2Ni(μ3‐NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S=). Cyclic voltammetry of5reveals two fully reversible redox events. The dianionic nitrenoid [K2(THF)9][(F,tbsL)Zn2Ni(μ3‐NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra‐ and intermolecular H‐atom abstraction processes. Ni K‐edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2Ni] nitrenoid complexes. However, DFT analysis suggests Ni‐borne oxidation for5. 
                        more » 
                        « less   
                    
                            
                            Integrating porphyrin-based nanoporous organic polymers with electrochemical aptasensors for ultratrace detection of kanamycin
                        
                    
    
            Abstract The synthesis and characterization of two new porphyrin-based porous organic polymers (POPs) via Sonogashira cross-coupling reaction and leverage the two obtained POPs is reported for the fabrication of electrochemical aptasensors to detect kanamycin at an ultratrace level. The resultant electrochemical aptasensor demonstrates a high linear relationship with the logarithmic value of kanamycin concentration in the range 5 × 10−5–5 μg/L with the limit of detection of 17.6 pg/L or 36.3 fM. During the analysis of real samples from milk and river, a relative standard deviation of less than 4.39%, and good recovery values in the range 97.0–105% were obtained. Graphical Abstract 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2345469
- PAR ID:
- 10490235
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Microchimica Acta
- Volume:
- 191
- Issue:
- 2
- ISSN:
- 0026-3672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This article contains detailed synthetic protocols for preparation of 5‐cyanomethyluridine (cnm5U) and 5‐cyanouridine (cn5U) phosphoramidites. The synthesis of the cnm5U phosphoramidite building block starts with commercially available 5‐methyluridine (m5C), followed by bromination of the 5‐methyl group to install the cyano moiety using TMSCN/TBAF. The cn5U phosphoramidite is obtained by regular Vorbrüggen glycosylation of the protected ribofuranose with silylated 5‐cyanouracil. These two modified phosphoramidites are suitable for synthesis of RNA oligonucleotides on solid phase using conventional amidite chemistry. Our protocol provides access to two novel building blocks for constructing RNA‐based therapeutics. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cnm5U and cn5U phosphoramidites Basic Protocol 2: Synthesis, purification, and characterization of cnm5U‐ and cn5U‐modified RNA oligonucleotidesmore » « less
- 
            Abstract The “masked” terminal Zn sulfide, [K(2.2.2‐cryptand)][MeLZn(S)] (2) (MeL={(2,6‐iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] (1) with 2.3 equivalents of KC8in THF, in the presence of 2.2.2‐cryptand, at −78 °C. Complex2reacts readily with PhCCH and N2O to form [K(2.2.2‐cryptand)][MeLZn(SH)(CCPh)] (4) and [K(2.2.2‐cryptand)][MeLZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of2was examined computationally and compared with the previously reported Ni congener, [K(2.2.2‐cryptand)][tBuLNi(S)] (tBuL={(2,6‐iPr2C6H3)NC(tBu)}2CH).more » « less
- 
            Abstract Patterned semiconductors are essential for the fabrication of nearly all electronic devices. Over the last two decades, semiconducting polymers (SPs) have received enormous attention due to their potential for creating low‐cost flexible electronic devices, while development of scalable patterning methods capable of producing sub‐μm feature sizes has lagged. A novel method for patterning SPs termed Projection Photothermal Lithography (PPL) is presented. A lab scale PPL microscope is built and it is demonstrated that rapid (≈4 cm2h−1) and large single exposure area (≈0.69 mm2) sub‐μm patterns can be obtained optically. Polymer domains are selectively removed via a photo‐induced temperature gradient that enables dissolution. It is hypothesized that commercial‐scale patterning with a throughput of≈5 m2h−1and resolution of<1μm could be realized through optimization of optical components.more » « less
- 
            Abstract Affinities of six anions (mesylate, acetate, trifluoroacetate,p‐toluenecarboxylate,p‐toluenesulfonate, and perfluorooctanoate) for three related Pt2+‐linked porphyrin nanocages were measured to probe the influence of different noncovalent recognition motifs (e. g., hydrogen bonding, electrostatics, π bonding) on anion binding. Two new hosts of M6L312+(1b) and M4L28+(2) composition (M=(en)Pt2+, L=(3‐py)4porphyrin) were prepared in a one‐pot synthesis and allowed comparison of hosts that differ in structure while maintaining similar N−H hydrogen‐bond donor ability. Comparisons of isostructural hosts that differ in hydrogen‐bonding ability were made between1band a related M6L312+nanoprism (1a, M=(tmeda)Pt2+) that lacks N−H groups. Considerable variation in association constants (K1=1.6×103 M−1to 1.3×108 M−1) and binding mode (exovs.endo) were found for different host–guest combinations. Strongest binding was seen betweenp‐toluenecarboxylate and1b, but surprisingly, association of this guest with1awas only slightly weaker despite the absence of NH⋅⋅⋅O interactions. The high affinity betweenp‐toluenecarboxylate and1acould be turned off by protonation, and this behavior was used to toggle between the binding of this guest and the environmental pollutant perfluorooctanoate, which otherwise has a lower affinity for the host.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
