skip to main content


Title: A High-Throughput Microfluidic Cell Sorter Using a Three-Dimensional Coupled Hydrodynamic-Dielectrophoretic Pre-Focusing Module

Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h−1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h−1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h−1 (>150,000 cells min−1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability.

 
more » « less
Award ID(s):
1841509 1841473
PAR ID:
10490318
Author(s) / Creator(s):
; ;
Editor(s):
Beskok, A.
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Micromachines
Volume:
14
Issue:
10
ISSN:
2072-666X
Page Range / eLocation ID:
1813
Subject(s) / Keyword(s):
microfluidics dielectrophoresis high-throughput cell sorting hydrodynamic dielectrophoretic 3D cell pre-focusing theoretical and numerical modeling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early‐stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high‐throughput separation of MDA‐231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single‐stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two‐stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high‐speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA‐231 CTCs from similar sized WBCs at a highReof 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA‐231 CTCs is expected to be sustained after separation due to the short‐term DEP exposure. The developed technique could be exploited to design active microchips for high‐throughput separation of mixed cell beads despite their significant size overlap, using DEP‐modified inertial focusing controlled simply by adjusting the applied external field.

     
    more » « less
  2. We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort. 
    more » « less
  3. Abstract

    Circulating tumor cells (CTCs) are shed from primary tumors, circulate in the bloodstream and are capable of initiating metastasis at distant anatomical sites. The detection and molecular characterization of CTCs are pivotal for early-stage cancer diagnosis and prognosis. Recently, microfluidic technology has achieved significant progress in the separation of cells from complex and heterogeneous mixtures for many biomedical applications. Conventional microfluidic platforms exploit the difference in size between the particles to achieve separation, which makes them ineffective for sorting overlapping-sized CTCs. To address this issue, we propose a method using a spiral channel for label-free, and high throughput separation of CTCs coupling Dielectrophoresis (DEP) with inertial microfluidics. A numerical model has been developed to investigate the separation effectiveness of the device over a range of electrical voltage and flow rates. The presented channel is shown to effectively isolate similar-sized CTCs from the white blood cells (WBCs) in a single-stage separation process. Subsequently, optimum working parameters to enhance separation efficiency have been proposed. The hybrid microfluidic device can provide valuable insight into the development of a robust, inexpensive, and efficient platform for cell separation with reduced analysis time for future cancer research and treatment.

     
    more » « less
  4. Abstract

    A simple, low‐cost, three‐dimensional (3D) lab‐on‐a‐foil microfluidic device for dielectrophoretic separation of circulating tumor cells (CTCs) is designed and constructed. Disposable thin films are cut by xurography and microelectrode array are made with rapid inkjet printing. The multilayer device design allows the studying of spatial movements of CTCs and red blood cells (RBCs) under dielectrophoresis (DEP). A numerical simulation was performed to find the optimum driving frequency of RBCs and the crossover frequency for CTCs. At the optimum frequency, RBCs were lifted 120 µm inz‐axis direction by DEP force, and CTCs were not affected due to negligible DEP force. By utilizing the displacement difference, the separation of CTCs (modeled with A549 lung carcinoma cells) from RBCs inz‐axis direction was achieved. With the nonuniform electric field at optimized driving frequency, the RBCs were trapped in the cavities above the microchannel, whereas the A549 cells were separated with a high capture rate of 86.3% ± 0.2%. The device opens not only the possibility for 3D high‐throughput cell separation but also for future developments in 3D cell manipulation through rapid and low‐cost fabrication.

     
    more » « less
  5. Abstract

    Microfluidic fluorescence‐activated cell sorters (μFACS) have attracted considerable interest because of their ability to identify and separate cells in inexpensive and biosafe ways. Here a high‐performance μFACS is presented by integrating a standing surface acoustic wave (SSAW)‐based, 3D cell‐focusing unit, an in‐plane fluorescent detection unit, and an SSAW‐based cell‐deflection unit on a single chip. Without using sheath flow or precise flow rate control, the SSAW‐based cell‐focusing technique can focus cells into a single file at a designated position. The tight focusing of cells enables an in‐plane‐integrated optical detection system to accurately distinguish individual cells of interest. In the acoustic‐based cell‐deflection unit, a focused interdigital transducer design is utilized to deflect cells from the focused stream within a minimized area, resulting in a high‐throughput sorting ability. Each unit is experimentally characterized, respectively, and the integrated SSAW‐based FACS is used to sort mammalian cells (HeLa) at different throughputs. A sorting purity of greater than 90% is achieved at a throughput of 2500 events s−1. The SSAW‐based FACS is efficient, fast, biosafe, biocompatible and has a small footprint, making it a competitive alternative to more expensive, bulkier traditional FACS.

     
    more » « less