skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Poroelastic response of unsaturated soils to cyclic loads with arbitrary waveforms
Abstract We develop an analytical solution to the problem of one‐dimensional consolidation of unsaturated soil subjected to cyclic loads with arbitrary waveforms. The solution predicts the excess pore water and pore air pressures and the accompanying vertical compression in a poroelastic, unsaturated soil material. Cyclic loading occurs in a variety of engineering applications and often generates higher excess pore fluid pressures and larger vertical compression than does a time‐invariant load. In the present study, the loading function is allowed to take on any arbitrary waveform represented by a Fourier trigonometric series. Analytical solution to the boundary‐value problem in one dimension is given in closed form describing the frequency‐independent and frequency‐dependent components of the poroelastic response. We verify the analytical solution through representative examples involving cyclic loads with square and triangular patterns. Apart from the shape of the forcing function, we also investigate the effects of initial water saturation, soil texture, and excitation frequency on the system response.  more » « less
Award ID(s):
1914780
PAR ID:
10490339
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical and Analytical Methods in Geomechanics
Volume:
48
Issue:
3
ISSN:
0363-9061
Format(s):
Medium: X Size: p. 679-700
Size(s):
p. 679-700
Sponsoring Org:
National Science Foundation
More Like this
  1. Fine-grained soils subjected to seismic loading often exhibit instability or failure of slopes, foundations, and embankments. To understand the behavior of clay soils under multiple earthquake loads, kaolinite samples were prepared and tested in the laboratory using a cyclic simple shear device. Each sample was subjected to two cyclic events separated by different degrees of reconsolidation periods to simulate different levels of excess pore water pressure dissipation. The results indicated that the degree to which excess pore water pressure generated during the first cyclic event was dissipated affected the cyclic resistance of the soil during the second cyclic event. The post-cyclic undrained shear strength was also found to be a function of the degree to which excess pore water pressure from the first cyclic load was allowed to dissipate prior to the application of the second cyclic load. 
    more » « less
  2. Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially saturated sandy soils during earthquake shaking and has caused significant distress to overlying and nearby structures. The phenomenon can be well characterized by load-dependent, interaction macro-level fatigue theories. Toward this end, the Byrne cyclic shear-volumetric strain coupling model is expanded and calibrated for evaluating seismic compression for several soil types. In addition, the model was transformed to allow it to be implemented in a “simplified” manner, in addition to the original “non-simplified” formulation. Both implementation approaches are used to analyze a site in Japan impacted by the 2007, Mw6.6 Niigata-ken Chuetsu-oki earthquake. The results from the analyses are in general accord with the post-earthquake field observations and highlight the sensitivity of predicted magnitude of the seismic compression to the input variables used and modeling assumptions (e.g. relative density of the soil, magnitude of the volumetric threshold strain, orientation of the ground motions, settlement of soils below the ground water table, and accounting for multidirectional shaking). Although additional studies are needed to further validate the findings presented herein, estimation of relative density and threshold shear strain of the soil and ground motion orientation individually have moderate-to-significant influence on the computed magnitude of seismic compression, but they have a significant influence when taken in combination. Also, the seismic compression models can seemingly be used to predict the settlement in fully saturated sand when the excess pore water pressures are limited. Finally, accounting for multidirectional shaking has a significant influence on the computed magnitude of seismic compression. 
    more » « less
  3. This paper presents the results from a study of the role of soil fabric on the cyclic response of silty soil samples retrieved from two different sites from a series of sites investigated as a part of a larger study: one along the Willamette River (Site B) and one along the Columbia River (Site D). The soils investigated in this study were retrieved from Site B and exhibited an average 𝑃𝐼=13, and from Site D which were characterized with an average 𝑃𝐼=28. The cyclic response of the soils was evaluated by performing several constant-volume, stress-controlled, cyclic direct simple shear tests (CDSS) with varying cyclic stress ratios, CSRs, on natural, intact specimens and their reconstituted counterparts. Despite the lower void ratios of the reconstituted specimens, the cyclic resistance of the intact specimens for Sites B and D at 15 loading cycles were 19% and 37% greater than their reconstituted counterparts, respectively. For the given loading conditions, the rate of excess pore pressure development, single amplitude shear strain (𝛾) accumulation, and shear stiffness degradation in reconstituted specimens were greater than the natural intact specimens, emphasizing the role of soil fabric, as confirmed by the lower shear wave velocity (𝑉𝑠) of reconstituted specimens compared to their intact counterparts. 
    more » « less
  4. Despite its fundamental basis and many positive attributes, the cyclic strain approach has not been embraced by practice for evaluating liquefaction triggering. One reason for this may be the need to perform cyclic laboratory tests to develop a relationship among excess pore water pressure, cyclic strain amplitude, and number of applied strain cycles. Herein an alternative implementation of the strain-based procedure is proposed that circumvents this requirement. To assess the efficacy of this alternative implementation, Standard Penetration Test field liquefaction case histories are evaluated. The results are compared with both field observations and with predictions from a stress-based procedure. It was found that the strain-based approach yields overly conservative predictions. Also, a potentially fatal limitation of the strain-based procedure is that it ignores the decrease in soil stiffness due to excess pore pressure when representing the earthquake loading in terms of shear strain amplitude and number of equivalent cycles. 
    more » « less
  5. McCartney, J.S.; Tomac, I. (Ed.)
    Thermal pore pressurization in soil media has been investigated for the past few decades. It has been shown that temperature variations may significantly affect thermal pore pressure in clay soils confined deep into the ground. Moreover, thermal loading may lead to stress change and thermal deformation. Thermo-poroelastic and advance thermo-poroelastoplastic constitutive models have been formulated and incorporated numerically to simulate the thermo-hydro-mechanical process. However, the accurate response of soil media during THM process has not been completely understood. Although numerical modelling reasonably predicts the experimental observations, they still could not be used to completely justify the field observations. In this study, the main features of the thermo-poroelastic model are incorporated in a thermo-poroelastoplastic constitutive model (ACMEG-T) to further investigate the effect of different thermal and hydraulic properties on thermo-hydro-mechanical (THM) response of the soil media. 
    more » « less