Chip designers can secure their ICs against piracy and overproduction by employing logic locking and obfuscation. However, there are numerous attacks that can examine the logic-locked netlist with the assistance of an activated IC and extract the correct key using a SAT solver. In addition, when it comes to fabrication, the imposed area overhead is a challenge that needs careful attention to preserve the design goals. Thus, to assign a logic locking method that can provide security against diverse attacks and at the same time add minimal area overhead, a comprehensive understanding of the circuit structure is needed. Towards this goal, in this paper, we first build a multi-label dataset by running different attacks on benchmarks locked with existing logic locking methods and various key sizes to capture the provided level of security and overhead for each benchmark. Then we propose and analyze CoLA, a convolutional neural network model that is trained on this dataset and thus is able to map circuits to secure low-overhead locking schemes by analyzing extracted features of the benchmark circuits. Considering various resynthesized versions of the same circuits empowers CoLA to learn features beyond the structure view alone. We use a quantization method that can lower the computation overhead of feature extraction in the classification of new, unseen data, hence speeding up the locking assignment process. Results on over 10,000 data show high accuracy both in the training and validation phases. 
                        more » 
                        « less   
                    
                            
                            Machine Learning-Based Security Evaluation and Overhead Analysis of Logic Locking
                        
                    
    
            Piracy and overproduction of hardware intellectual properties are growing concerns for the semiconductor industry under the fabless paradigm. Although chip designers have attempted to secure their designs against these threats by means of logic locking and obfuscation, due to the increasing number of powerful oracle-guided attacks, they are facing an ever-increasing challenge in evaluating the security of their designs and their associated overhead. Especially while many so-called "provable" logic locking techniques are subjected to a novel attack surface, overcoming these attacks may impose a huge overhead on the circuit. Thus, in this paper, after investigating the shortcoming of state-of-the-art graph neural network models in logic locking and refuting the use of hamming distance as a proper key accuracy metric, we employ two machine learning models, a decision tree to predict the security degree of the locked benchmarks and a convolutional neural network to assign a low-overhead and secure locking scheme to a given circuit. We first build multi-label datasets by running different attacks on locked benchmarks with existing logic locking methods to evaluate the security and compute the imposed area overhead. Then, we design and train a decision tree model to learn the features of the created dataset and predict the security degree of each given locked circuit. Furthermore, we utilize a convolutional neural network model to extract more features, obtain higher accuracy, and consider overhead. Then, we put our trained models to the test against different unseen benchmarks. The experimental results reveal that the convolutional neural network model has a higher capability for extracting features from unseen, large datasets which comes in handy in assigning secure and low-overhead logic locking to a given netlist. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2245247
- PAR ID:
- 10490355
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Hardware and Systems Security
- ISSN:
- 2509-3428
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Globalization of integrated circuits manufacturing has led to increased security concerns, notably theft of intellectual property. In response, logic locking techniques have been developed for protecting designs, but many of these techniques have been shown to be vulnerable to SAT-based attacks. In this paper, we explore the use of Boolean sensitivity to analyze these locked circuits. We show that in typical circuits there is an inverse relationship between input width and sensitivity. We then demonstrate the utility of this relationship for de-obfuscating circuits locked with a class of “provably secure” logic locking techniques. We conclude with an example of how to resist this attack, although the resistance is shown to be highly circuit dependent.more » « less
- 
            Dual rail adiabatic circuit design offers hardware-level protection against side-channel power analysis attacks such as Differential Power Analysis (DPA) and Correlation Power Analysis (CPA) attacks. While considerable attention has been given to synthesizing logic tree-based adiabatic circuits, comparatively little attention has been given to generating truly secure circuit variants. This paper presents preliminary results for a secure dual rail adiabatic synthesis tool based on Binary Decision Diagrams (BDDs). The tool demonstrates encouraging performance in matching known optimal transistor counts for several basic logic gates, in addition to providing improvement over existing works on established benchmarks.more » « less
- 
            Logic locking is a promising solution against emerging hardware security threats, which entails protecting a Boolean circuit using a “keying” mechanism. The latest and hitherto unbroken logic-locking techniques are based on the “corrupt-and-correct (CAC)” principle, offering provable security against input-output query attacks. However, it remains unclear whether these techniques are susceptible to structural attacks. This paper exploits the properties of integrated circuit (IC) design tools, also termed electronic design automation (EDA) tools, to undermine the security of the CAC techniques. Our proposed attack can break all the CAC techniques, including the unbroken CACrem technique that 40+ hackers taking part in a competition for more than three months could not break. Our attack can break circuits processed with any EDA tools, which is alarming because, until now, none of the EDA tools can render a secure locking solution: logic locking cannot make use of the existing EDA tools. We also provide a security property to ensure resilience against structural attacks. The commonly-used circuits can satisfy this property but only in a few cases where they cannot even defeat brute-force; thus, questions arise on the use of these circuits as benchmarks to evaluate logic locking and other security techniques.more » « less
- 
            Globalized outsourcing of integrated circuit manufacturing has introduced potent security threats such as unauthorized overproduction and hardware Trojan insertion. An approach that is used to protect circuit designs from overproduction is logic locking, which introduces key inputs to a digital circuit such that only the correct key will allow the circuit to work properly and all others will cause unintended functionality. On the other hand, the majority of the existing methods to tackle hardware Trojans are in the realm of proactive prevention or static detection, but a more challenging problem, which is the run-time mitigation of the Trojans inserted in a zero-trust design flow, is yet to be solved. In this work, we look through the lens of logic locking with the goal of introducing online reconfigurability into a design and apply the fundamental principles of fault tolerance and state traversal to create an effective mitigation tactic against hardware Trojans. Redundancy is inserted at low-controllable states to create trap states for the attackers, and key inputs are added to select the active path. The strength of our proposed approach lies in its ability to circumvent Trojan payloads transparently at run-time with only a slight overhead, as demonstrated by experiments run on over 40 benchmarks of varying sizes. We also demonstrate viability when combined with secure logic locking methods to provide multi-objective security.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    